Эрик Роджерс - Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Тут можно читать онлайн Эрик Роджерс - Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Мир, год 1973. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра
  • Автор:
  • Жанр:
  • Издательство:
    Мир
  • Год:
    1973
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Эрик Роджерс - Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра краткое содержание

Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - описание и краткое содержание, автор Эрик Роджерс, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.

Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - читать онлайн бесплатно полную версию (весь текст целиком)

Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - читать книгу онлайн бесплатно, автор Эрик Роджерс
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

*От первоначального направления движения альфа-частиц.

**Число сцинтилляций, наблюдавшихся за определенное, постоянное для всех опытов время, для заданного угла А °.

Примечание . В подлинных экспериментах Гейгер и Марсден проводили один ряд измерений для больших углов отклонения и другой ряд для малых углов отклонения с намного более слабым радиоактивным источником. Для получения единого ряда данных в приведенной выше таблице числа сцинтилляций для малых углов были умножены на соответствующий коэффициент.

Оригинальные данные можно найти в журнале Philosophical Magazine, 25, 610 (1913), табл. II.

Резерфорд мог даже оценить заряд ядер. Первые его расчеты указывали на атомный номер — порядковый номер элемента-рассеивателя в периодической системе. Уже «носилась в воздухе» идея, что этот порядковый номер, который численно составляет около половины атомного веса для легких элементов, должен играть большую роль в объяснении структуры атома. Казалось возможным полагать, что число электронов в атоме составляет около половины числа, определяющего атомный вес. Исключение составлял водород, терявший только один электрон. Но уже гелий (масса гелия больше массы водорода в 4 раза) может легко терять два электрона; он не показывает никаких признаков возможности потерять большее их число. Была сделана попытка рассчитать число электронов в атоме углерода, заставляя его рассеивать рентгеновские лучи, вероятно, излучаемые при «вибрациях» атомных электронов. Рентгеновские лучи могли рассеиваться твердыми телами, и казалось вероятным, что «вибраторами», взаимодействующими с рентгеновскими лучами, были электроны. С трудом полученная округленная оценка числа электронов в атоме углерода дала значение около 6. Но количество электронов, вращающихся вокруг ядер в атомной модели Резерфорда, должно быть численно равно положительному заряду ядра Z .

Резерфорд, таким образом, сделал предположение, что заряд ядра равен порядковому номеру элемента в периодической системе, его атомному номеру [137]. Это положение можно проверить, исследуя рассеяние альфа-частиц, так как константа К , входящая в предсказание, может быть рассчитана — все члены формулы, кроме Z , известны. Таким образом, наблюдение рассеяния альфа-частиц позволяет рассчитать значение Z . Было изучено рассеяние альфа-частиц тонкими листами меди, серебра, платины. Порядковые номера этих элементов в периодической системе или «атомные номера», равны 29, 47, 78. Изучение рассеяния α -лучей этими металлами дало значения Z , равные 29,3, 46,3, 77,4, с точностью в 1 %.

Далее, мы можем рассчитать, насколько близко от ядра прошла альфа-частица, если мы уверены в приложимости закона обратных квадратов и знаем величину заряда ядра. Мы найдем, что хорошим приближением является 10 -14м, или 0,0001 А°. Это в 10 000 раз меньше оценки для размера атома (1 или 2 А°). Таким образом, представляется, что 9999/10 000 объема атома является пустым. (См. задачу 17 в гл. 33 ).

Итак, мы имеем ясную картину атома с крошечным массивным ядром, несущим положительный заряд, в Z раз больший, чем заряд электрона, и Z электронами, вращающимися вокруг ядра на большом расстоянии от него. Атом водорода имеет Z = 1, ядро с единичным положительным зарядом и один электрон; атом гелия с Z = 2 имеет ядро с зарядом «++»и два электрона и т. д. Отдавая свой электрон, атом водорода превращается в ион водорода Н +, который мы сейчас называем протоном . Отдавая два свои электрона, атом гелия превращается в альфа-частицу, Не ++. (Не удивительно, что испускаемая альфа-частица — гелий без электронов — имеет ровно два «+» заряда.) Другие атомы при образовании ионов обычно теряют только один или два электрона из многих.

Картина, представляющая атом в виде миниатюрной солнечной системы, оказалась слишком упрощенной. Последующие исследования показали, что электроны не вращаются по планетарным эллиптическим орбитам и не разложены по орбитам с такой точностью, как предметы по полочкам у хорошей домохозяйки. Ранняя модель атома содержала слишком много ненаблюдаемых деталей, хотя рассеяние альфа-частиц и дало ясную информацию о том, что атом является почти пустым образованием с маленьким, массивным, положительно заряженным ядром, создающим вокруг себя электрическое поле, убывающее обратно пропорционально квадрату расстояния и действующее на больших расстояниях в пределах области, определяемой размерами атома, найденными ранее. Картина атома, данная Резерфордом, была явно незаконченной, требовались дальнейшие теоретические рассмотрения и дальнейшие исследования. Теоретические рассмотрения, начатые Бором, привели к новой теории, к которой мы и обратимся.

Задачи к главе 40

Задача 1

а) Какие очевидные экспериментальные факты убеждают нас, что гравитационное поле Солнца подчиняется закону обратных квадратов в большой области, простирающейся от 57 600 000 до 44 800 000 000 км?

б) Какие наблюдения можно сделать (случайно) для расширения области исследования гравитационного поля Солнца в сторону уменьшения и увеличения границ, указанных в а) ?

в) Какие эксперименты показывают, что взаимодействие атомного ядра (например, ядра атома золота) с внешними электрическими зарядами подчиняется закону обратных квадратов?

г) Какие другие сведения об атомном ядре дают эксперименты, о которых говорится в в) ?

Задача 2. Связь рассеяния альфа-частиц с их скоростью

Если вы не решили задачу 3 в гл. 18 , вы можете проанализировать условия этой задачи снова, используя более новые знания, полученные при изучении этой главы.

Когда две нейтральные молекулы (или два атома) налетают друг на друга, то при сближении происходит их поляризация (небольшое смещение разноименных зарядов в противоположные стороны). Благодаря этому между молекулами возникает слабое притяжение (притяжение разноименных зарядов эффективнее отталкивания одноименных).

При более тесном сближении системы электронов в атомах начинают сплющиваться, оказывая сопротивление сближению (принцип Паули, глава 44 ). Электроны могут перейти на орбиты, охватывающие оба атома. При этом возникает сильное отталкивание между атомами за счет кулоновского взаимодействия ядер. Тогда атомы разлетаются со своими первоначальными кинетическими энергиями.

Медленный электрон (например, с энергией 1/2 эв) не может вызвать каких-либо изменений в атоме. Он упруго отскакивает от массивного атома.

Однако более быстрый электрон (например, с энергией 100 эв) может выбить у атома электрон (за счет своей кинетической энергии). Выбитый электрон блуждает до тех пор, пока не захватывается другим атомом, образуя из него отрицательный ион.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Эрик Роджерс читать все книги автора по порядку

Эрик Роджерс - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра отзывы


Отзывы читателей о книге Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра, автор: Эрик Роджерс. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x