Эрик Роджерс - Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра
- Название:Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра
- Автор:
- Жанр:
- Издательство:Мир
- Год:1973
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Эрик Роджерс - Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра краткое содержание
Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
В 1820-х гг. пришло время, когда это открытие созрело. Ампер и Эрстед искали его (но не поняли, что все дело заключается в движении магнита), и Фарадей в Англии, и Генри в Америке пытались «превратить магнетизм в электричество». В 1832 г. они оба провозгласили об открытии того, что теперь называется электромагнитной индукцией .
Подобно вашей работе с «магнитами и катушками», их простые опыты, казалось бы, страшно далеки от современных мощных энергосистем, но они открыли принцип, на котором основаны сегодняшние генераторы. Тот же принцип существен для электромоторов: во вращающихся катушках моторов поля магнитов наводят «обратную э.д.с.», которая ограничивает силу тока и позволяет моторам выдерживать большие нагрузки.
Понаблюдайте, как увеличивается ток через мотор, работающий на постоянном токе, когда нагрузка на мотор возрастает. Добавление нагрузки немного его замедляет, но тогда «обратная э.д.с.» становится меньше, ток, обусловленный внешним напряжением, возрастает, а это приводит к увеличению силы и подхватыванию мотором возросшей нагрузки.
Мы не будем касаться устройства генераторов, но вам следовало бы посмотреть на работу простого генератора постоянного тока: вращающуюся катушку с коллектором, обеспечивающим выпрямление генерируемого в катушке переменного тока.
Объяснение с помощью электронной теории
Электронная теория позволяет просто понять, что такое наведенное напряжение. Представим себе металлический провод, содержащий облако свободных электронов, способных переносить ток. Когда провод движется поперек магнитного поля, вместе с ним движутся его свободные электроны, причем тоже поперек поля. Каждый движущийся электрон создает электрический ток, направленный поперек поля. Поэтому можно ожидать, что каждый электрон испытывает действие отклоняющей силы, перпендикулярной направлению движения и поля. Следовательно, сила направлена вдоль провода. Эта сила, действуя на электроны, толкает их вдоль провода , создавая э.д.с., стремящуюся вызвать ток точно так же, как если бы это была батарея. Таким образом, считается, что э.д.с. индукции обусловлена силами, действующими на свободные электроны при движении их поперек магнитного поля [139].
(Положительные заряды отклоняются силой в противоположную сторону: на них действует та же э.д.с., приводя их в движение, если они свободны.)
Закон Ленца
В какую сторону течет индукционный ток? Чтобы ответить на этот вопрос, следовало бы проделать опыт с движущимся магнитом и катушкой и сравнить направление отклонения стрелки прибора с тем, которое наблюдается при прохождении через него известного тока. При этом вы обнаружили бы, что в каждом случае индуцированный ток течет через катушку (или прямой провод) в таком направлении, что создаваемое самим током магнитное поле препятствует вызванному изменению поля, т. е. если магнит приближается к катушке, то ток в ней создает магнитное поле, отталкивающее магнит, если же магнит удаляется от катушки, то ток заставляет катушку притягивать его; если же катушка вращается и, следовательно, меняется число пронизывающих ее силовых линий магнитного поля, то ток создает поле, препятствующее вращению. Эффекты, вызванные индукцией, всегда противятся изменениям, вызывающим их. Это «инерция» движения в более общей формулировке. Она называется законом Ленца в честь Эмиля Ленца, сформулировавшего его. В справедливости этого закона можно убедиться на опыте или же, если вы верите в закон сохранения энергии, вывести из него. Когда цепь разомкнута, тока индукции нет, зато есть э.д.с. индукции, которая действует в том направлении, в котором протекал бы ток, если бы цепь была замкнута.
Отрицательный магнетизм: универсальный диамагнетизм Теперь можно пролить свет на упомянутый в гл. 34 «отрицательный магнетизм», свойственный всем веществам. Каждый электрон, описывающий нечто, вроде «орбиты» вокруг атомного ядра, эквивалентен крошечной электрической цепи. Когда мы включаем внешнее магнитное поле, его силовые линии, пронизывая орбиту электрона, наводят в ней э.д.с., которая ускоряет или замедляет электрон таким образом, чтобы препятствовать возрастанию магнитного поля в области орбиты. Тогда до тех пор, пока приложено внешнее магнитное поле, движение электрона по орбите остается измененным. (Магнитный вклад электронных спинов , однако, остается неизменным.)
Следует ожидать, что все электронные орбиты атомов должны участвовать в этом сопротивлении (т. е ослаблении воздействия) — все вещества должны отталкиваться магнитом, правда очень слабо. Этот «диамагнетизм» маскируется положительным эффектом в таких атомах, как железо и кислород, электроны которых создают направленное вдоль приложенного извне результирующее магнитное поле, складывающееся с ним. Железо и кислород притягиваются магнитом. Нов веществах, состоящих из немагнитных атомов (у которых спины и орбиты компенсируют друг друга в магнитном отношении), диамагнетизм проявляется в качестве единственного магнитного свойства вещества.
Картина силовых линий
Если угодно, можно представить себе провод, который при движении тянет за собой силовые линии магнитного поля и вытягивает их на некоторое расстояние, пока они не порвутся. Эта воображаемая картина дает возможность понять существование и направление реального индукционного тока. Например, когда провод, направленный перпендикулярно рисунку, движется вверх в поле подковообразного магнита, как показано на фиг. 72, а , можно представить себе, что за проводом тащится часть силовых линий, подобно гирляндам, как показано на фиг. 72, б . Если добавить немного деталей, нарисовав фиг. 72, в , то получится поле, которое было бы, если бы по самому проводу тек ток. Этот предполагаемый ток есть не что иное, как ток индукции, если есть он один. Согласно картине суммарного поля, провод должен двигаться вниз. Предсказанный фиг. 72, в наведенный ток препятствует первоначальному движению провода.
Фиг. 72. Провод, движущийся поперек силовых линий магнитного поля. (Воображаемая картина механизма возникновения индукции.)
Опыт 3(б).Продолжая ранее проведенные опыты, присоедините катушку к микроамперметру и начните вдвигать в нее и выдвигать из нее один из полюсов подковообразного магнита. Можете ли вы сказать в свете проведенного выше рассмотрения, почему при этом возникает переменный ток?
Опыт 3(в).Поместив катушку между полюсами подковообразного магнита и двигая ее, можно изменять число пронизывающих катушку силовых линий. Сделайте это. Перемотайте катушку так, чтобы она могла поместиться в пространстве между полюсами подковообразного магнита, и начните вращать ее (фиг. 73). Получится простейший генератор переменного тока. Обратите внимание на то, что когда катушка находится в положении а , то ее пронизывает, скажем, 100 магнитных силовых линий, в позиции б — нуль, а в позиции в — 100 линий. Изменение числа линий при переходе от позиции а к в равно — 200 линиям; скорость же изменения максимальна в позиции б .
Читать дальшеИнтервал:
Закладка: