Брайан Кокс - Почему Е=mc²? И почему это должно нас волновать

Тут можно читать онлайн Брайан Кокс - Почему Е=mc²? И почему это должно нас волновать - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Манн, Иванов и Фербер, год 2016. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Почему Е=mc²? И почему это должно нас волновать
  • Автор:
  • Жанр:
  • Издательство:
    Манн, Иванов и Фербер
  • Год:
    2016
  • Город:
    Москва
  • ISBN:
    978-5-00057-950-3
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Брайан Кокс - Почему Е=mc²? И почему это должно нас волновать краткое содержание

Почему Е=mc²? И почему это должно нас волновать - описание и краткое содержание, автор Брайан Кокс, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Эта книга поможет понять теорию относительности и проникнуть в смысл самого известного в мире уравнения. Своей теорией пространства и времени Эйнштейн заложил фундамент, на котором зиждется вся современная физика. Пытаясь постичь природу, физики и сегодня создают теории, которые иногда в корне меняют нашу жизнь. О том, как они это делают, рассказывается в этой книге.
Книга будет полезна всем, кто интересуется устройством мира.

Почему Е=mc²? И почему это должно нас волновать - читать онлайн бесплатно полную версию (весь текст целиком)

Почему Е=mc²? И почему это должно нас волновать - читать книгу онлайн бесплатно, автор Брайан Кокс
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Хотя уже было сказано многое, это еще не все. Мы еще не упомянули о предмете особой гордости стандартной модели: она не только охватывает электромагнитное, сильное и слабое взаимодействие, но еще и объединяет два из них. На первый взгляд может показаться, что явления электромагнитного и слабого взаимодействия никак друг с другом не связаны. Электромагнетизм – исконное явление реального мира, которое все мы понимаем на интуитивном уровне, тогда как слабое взаимодействие скрыто в загадочном субъядерном мире. Как это ни удивительно, стандартная модель говорит о том, что эти две силы – фактически проявление одного и того же. Посмотрите еще раз на вторую строку основного уравнения. Даже не зная математики, вы сможете увидеть взаимодействие между частицами вещества. Те фрагменты второй строки, в которых присутствуют символы W, B и G (для глюона), расположены между двумя частицами вещества, Ψ, а это значит, что они говорят нам, как частицы вещества «объединяются» с переносчиками взаимодействия, но с одним важным уточнением. Фотон частично скрыт под символом W и частично – под символом B , но ведь здесь же обитает и Z ! Частица W полностью скрыта в символе W . Создается впечатление, что это математическое соотношение рассматривает в качестве фундаментальных объектов W и B , но их сочетание как по волшебству образует фотон и частицу Z . В итоге электромагнитное взаимодействие (которое переносит фотон) и слабое взаимодействие (которое переносят частицы W и Z ) связаны друг с другом. Это означает, что свойства, которые можно измерить в ходе экспериментов с электромагнитными явлениями, должны быть связаны со свойствами, измеряемыми в ходе экспериментов со слабым взаимодействием. Это весьма впечатляющий прогноз стандартной модели. И он получил подтверждение: создатели стандартной модели Шелдон Глэшоу, Стивен Вайнберг и Абдус Салам [51]были награждены Нобелевской премией, поскольку их теория помогла предсказать массу частиц W и Z задолго до того, как в 1980-х годах эти частицы были открыты в CERN. Все члены уравнения прекрасно согласуются друг с другом. Но откуда Глэшоу, Вайнберг и Салам знали, что именно следует в нем записать? Как они поняли, что сочетание W и B образует фотон и частицу Z ? Ответить на этот вопрос – значит на мгновение увидеть прекрасную сущность современной физики элементарных частиц. Глэшоу, Вайнберг и Салам не просто догадались обо всем, у них в руках была важная путеводная нить: этот мир симметричен.

Симметрия проявляется повсюду. Поймайте снежинку и внимательно присмотритесь к этому самому прекрасному из творений природы. Схема ее рисунка повторяется с математической точностью, как отражение в зеркале. Более обыденный пример – мяч, который выглядит одинаково, как бы вы его ни повернули. Если повернуть квадрат вокруг диагонали или оси, которая проходит через центры его противоположных сторон, на 180°, это не изменит его вид. В физике симметрия проявляется точно так же. Если мы сделаем что-то с уравнением, но оно не изменится, тогда то, что мы с ним сделали, будет называться симметрией уравнения. Это несколько абстрактное понятие, однако следует помнить, что уравнения – это инструмент, с помощью которого физики описывают взаимодействие реальных объектов. Простая, но значимая симметрия, присущая всем важным уравнениям в физике, – свидетельство того, что, если мы возьмем оборудование для проведения эксперимента и разместим его на поезде, эксперимент даст те же результаты (при условии, что поезд движется без ускорения). Мы уже знакомы с этой идеей: речь идет о принципе относительности Галилея, лежащем в основе теории Эйнштейна. Если говорить в терминах симметрии, уравнения, описывающие наш эксперимент, не зависят от того, где именно он проводится: на железнодорожной платформе или в поезде, поэтому сам факт перемещения оборудования для проведения эксперимента – симметрия данного уравнения. Мы уже знаем, что этот простой факт в конечном счете подтолкнул Эйнштейна к открытию теории относительности. Так часто бывает: простая симметрия может повлечь далеко идущие последствия.

Теперь мы готовы поговорить о симметрии, которую использовали Глэшоу, Вайнберг и Салам, когда открыли стандартную модель физики элементарных частиц. У нее довольно причудливое название: калибровочная симметрия. Почему именно калибровочная? Прежде чем объяснять, что это значит, позвольте рассказать о том, что это нам дает. Давайте представим, что мы – Глэшоу, Вайнберг и Салам, ломающие голову над поиском теории, описывающей взаимодействие одних вещей с другими. Начнем с решения построить теорию, касающуюся крохотных неделимых частиц. Эксперименты показали, какие из этих частиц действительно существуют, поэтому наша теория должна охватывать их все, в противном случае она будет поверхностной. Безусловно, мы могли бы поразмышлять еще немного и попытаться понять, почему именно эти частицы должны быть теми, из которых образовано все сущее во Вселенной, или почему они должны быть неделимыми, но это только отвлекло бы нас от главного. На самом деле это два очень важных вопроса, на которые до сих пор нет ответов. Одно из качеств хорошего ученого – его способность определить, какие вопросы задать, для того чтобы двигаться дальше, а какие лучше отложить на потом. Так что давайте примем эти частицы как данность и попытаемся понять, как они взаимодействуют друг с другом. Если бы они не вступали во взаимодействие, мир был бы скучным: все проникало бы сквозь все остальное, ничто не объединялось бы в группы и у нас так и не было бы ядер, атомов, животных или звезд. Однако физика зачастую сводится к совершению небольших шагов. Не так уж трудно построить теорию частиц в случае, когда они не взаимодействуют друг с другом, – для этого достаточно вычеркнуть из второй строки основного уравнения фрагменты с участием W, B и G . И получим квантовую теорию всего, но без каких-либо взаимодействий. Вот мы и предприняли наш первый маленький шаг. А теперь начинается волшебство. Мы выдвинем требование о том, что в нашем мире, а значит, и в нашем уравнении должна присутствовать калибровочная симметрия. Это повлечет за собой поразительные последствия: оставшаяся часть второй строки и вся первая строка уравнения возникнут «просто так». Другими словами, мы будем вынуждены внести изменения в версию уравнения без взаимодействий, если хотим удовлетворить требования калибровочной симметрии. Совершенно неожиданно мы перешли от самой скучной в мире теории к той, в которой существует фотон, частицы W и Z , а также глюон. Более того, они отвечают за перенос всех взаимодействий между частицами. Иными словами, мы получили теорию, способную описать структуру атомов, сияние звезд и даже совокупность таких сложных объектов, как человеческие существа, – и все это благодаря применению концепции симметрии. У нас теперь есть первые две строки теории почти всего, и остается только объяснить, что представляет собой эта удивительная симметрия, а затем рассказать о двух последних строках основного уравнения.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Брайан Кокс читать все книги автора по порядку

Брайан Кокс - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Почему Е=mc²? И почему это должно нас волновать отзывы


Отзывы читателей о книге Почему Е=mc²? И почему это должно нас волновать, автор: Брайан Кокс. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x