Брайан Кокс - Почему Е=mc²? И почему это должно нас волновать

Тут можно читать онлайн Брайан Кокс - Почему Е=mc²? И почему это должно нас волновать - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Манн, Иванов и Фербер, год 2016. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Почему Е=mc²? И почему это должно нас волновать
  • Автор:
  • Жанр:
  • Издательство:
    Манн, Иванов и Фербер
  • Год:
    2016
  • Город:
    Москва
  • ISBN:
    978-5-00057-950-3
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Брайан Кокс - Почему Е=mc²? И почему это должно нас волновать краткое содержание

Почему Е=mc²? И почему это должно нас волновать - описание и краткое содержание, автор Брайан Кокс, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Эта книга поможет понять теорию относительности и проникнуть в смысл самого известного в мире уравнения. Своей теорией пространства и времени Эйнштейн заложил фундамент, на котором зиждется вся современная физика. Пытаясь постичь природу, физики и сегодня создают теории, которые иногда в корне меняют нашу жизнь. О том, как они это делают, рассказывается в этой книге.
Книга будет полезна всем, кто интересуется устройством мира.

Почему Е=mc²? И почему это должно нас волновать - читать онлайн бесплатно полную версию (весь текст целиком)

Почему Е=mc²? И почему это должно нас волновать - читать книгу онлайн бесплатно, автор Брайан Кокс
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Симметрия снежинки носит геометрический характер, поэтому ее можно увидеть собственными глазами. Симметрия, лежащая в основе принципа относительности Галилея, – это не то, что можно увидеть глазами, но все же можно понять, даже если это абстракция. Калибровочная симметрия подобна принципу Галилея в том, что она носит абстрактный характер, хотя при наличии воображения уловить ее суть не так уж трудно. Для того чтобы помочь вам свести воедино приведенные здесь описания с основными математическими понятиями, мы анализировали центральное уравнение. Давайте сделаем это снова. Как мы уже говорили, частицы вещества представлены в нем греческим символом Ψ. Теперь копнем еще глубже. То, что обозначают символом Ψ, называется полем. Это может быть поле электрона, или поле верхнего кварка, или любой другой частицы, входящей в стандартную модель. В том месте, где поле самое сильное, вероятнее всего, и находится частица. Пока что нас интересуют электроны, но то же самое верно и для любых других частиц, от кварков до нейтрино. Если в каком-то месте поле имеет нулевое значение, частицы там не будет. Вы можете даже представить себе такое поле в виде реального поля с травой или, что еще лучше, в виде волнообразного ландшафта с холмами и впадинами. Там, где холмы, поле самое сильное, а где впадины – самое слабое. Мы предлагаем вам мысленно нарисовать себе поле электрона. Возможно, вас удивляет тот факт, что наше основное уравнение носит столь неопределенный характер. Оно не работает с достоверными событиями. Более того, мы даже не можем отслеживать движение электрона. Все, что мы можем, – это сказать, что вероятность его пребывания в одном месте (там, где расположена гора) выше, тогда как в другом (там, где впадина) – ниже. Мы можем присвоить определенные значения вероятности пребывания электрона в том или ином месте, но этим все и ограничивается. Такая расплывчатость описания мира на уровне очень малых расстояний объясняется тем, что здесь правит бал квантовая теория, имеющая дело только с вероятностью наступления тех или иных событий. Создается впечатление, что в основе таких концепций, как местоположение и импульс в масштабе малых расстояний, действительно лежит некая фундаментальная неопределенность. Кстати, Эйнштейну очень не нравилось то, что наш мир должен функционировать в соответствии с законами вероятности, и он даже высказал свою знаменитую мысль: «Бог не играет в кости». Тем не менее он был вынужден признать, что квантовая теория оказалась невероятно успешной. Она объясняет результаты всех экспериментов, проведенных в области субатомных частиц, и без нее мы не понимали бы, как работают микросхемы в современных компьютерах. Возможно, в будущем кто-то создаст еще более эффективную теорию, но пока что квантовая теория – наша лучшая попытка. На протяжении всего повествования мы изо всех сил старались обратить ваше внимание на следующий факт: нет абсолютно никаких оснований для того, чтобы окружающий мир подчинялся нашему здравому смыслу, когда мы пытаемся объяснить явления, выходящие за рамки повседневного опыта. Мы развивались в условиях механики большого мира, а не квантовой механики.

Но вернемся к нашей задаче. Поскольку квантовая теория определяет правила игры, мы просто обязаны поговорить о полях электронов. Однако недостаточно просто установить поле и определить ландшафт. В математике квантовых полей скрыта одна неожиданность, состоящая в наличии определенной избыточности. Математика гласит, что для любой точки ландшафта, будь то холм или впадина, мы должны указывать не только значение поля в определенной точке (скажем, высоту над уровнем моря в нашей аналогии с реальным полем), соответствующей вероятности пребывания в ней частицы, но еще и то, что обозначают термином «фаза поля». Такую фазу легче всего представить себе в виде циферблата (или круглой шкалы), только с одной стрелкой. Если стрелка указывает на 12 часов, это одна возможная фаза, а если на шесть – другая. Представьте себе, что мы разместили небольшие циферблаты во всех без исключения точках нашего ландшафта, причем каждый из них говорит нам о фазе, в которой находится поле в данной точке. Безусловно, это ненастоящие часы (и они, разумеется, не измеряют время). Существование фазы – это то, что было известно специалистам по квантовой физике задолго до Глэшоу, Вайнберга и Салама. Более того, все знали, что, хотя относительная фаза между различными точками поля имеет значение, фактические показатели не играют никакой роли. Например, вы могли бы перевести все свои крохотные часы на десять минут вперед – и ничего бы не изменилось. Главное здесь то, что вы должны перевести все часы на одинаковое количество минут. Если забудете перевести хотя бы одни из них, это будет означать, что вы описываете другое поле электронов. Следовательно, в математическом описании мира присутствует определенная избыточность.

В 1954 году, за несколько лет до того, как Глэшоу, Вайнберг и Салам создали стандартную модель, Чжэньнин Янг [52]и Роберт Миллс [53]из Брукхейвенской национальной лаборатории задались вопросом, какое значение может иметь избыточность, связанная с введением фазы. Физика часто получает дальнейшее развитие, когда ученые начинают обыгрывать те или иные идеи без достаточных на то оснований. Янг и Миллс именно этим и занимались. Им захотелось узнать, что произошло бы, если бы Вселенной не было никакого дела до фазы. Другими словами, они решили сыграть с математическими уравнениями, перемешав все фазы, и попытались понять, какими могут быть последствия. Это может показаться странным, но если вы посадите пару физиков в одном кабинете и дадите им свободу действий, то именно этим они и займутся. Возвращаясь к нашей аналогии с ландшафтом, вы можете себе представить, что идете по полю, безо всякой системы меняя показания маленьких циферблатов на разные величины. То, что произойдет, на первый взгляд выглядит достаточно просто: вам не позволено так поступать. Это не соответствует симметрии Вселенной.

Для того чтобы точнее сформулировать эту идею, давайте вернемся к основному уравнению и еще раз взглянем на его вторую строку. Теперь исключим из нее фрагменты, содержащие W, B и G . В итоге получим самую простейшую из возможных теорию частиц: частицы просто сидят без дела и никогда не вступают во взаимодействие друг с другом. Эта небольшая часть основного уравнения совершенно определенно не останется неизменной, если мы вдруг возьмем и перенастроим все маленькие часы (вряд ли вы сможете это увидеть, просто глядя на уравнение). Янг и Миллс знали это, но проявили б о льшую настойчивость, поставив один очень важный вопрос: как можно изменить уравнение, чтобы оно все же осталось неизменным? Ответ поражает: необходимо вернуть те его фрагменты, которые мы только что исключили, – больше ничего для этого не подойдет. После этого частицы – переносчики взаимодействий как по волшебству появятся на свет и совершенно неожиданно мы перейдем от мира без взаимодействий к теории, которая способна описать наш реальный мир. Тот факт, что основному уравнению нет никакого дела до показателей на циферблатах (или калибров), – и есть то, что мы подразумеваем под калибровочной симметрией. Самое удивительное, что требование наличия калибровочной симметрии не оставляет нам выбора в том, что записывать в уравнении: калибровочная симметрия неизбежно приводит к основному уравнению. Другими словами, те силы, которые делают наш мир интересным, существуют как следствие того, что калибровочная симметрия – это и есть симметрия Вселенной. В качестве постскриптума добавим, что Янг и Миллс подали пример, но их работа главным образом представляла математический интерес и была выполнена задолго до того, как специалисты по физике элементарных частиц вообще узнали, какие частицы должна описывать фундаментальная теория. Именно Глэшоу, Вайнберг и Салам поняли, что идеи Янга и Миллса можно применить к описанию реального мира.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Брайан Кокс читать все книги автора по порядку

Брайан Кокс - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Почему Е=mc²? И почему это должно нас волновать отзывы


Отзывы читателей о книге Почему Е=mc²? И почему это должно нас волновать, автор: Брайан Кокс. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x