Брайан Кокс - Почему Е=mc²? И почему это должно нас волновать
- Название:Почему Е=mc²? И почему это должно нас волновать
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2016
- Город:Москва
- ISBN:978-5-00057-950-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Брайан Кокс - Почему Е=mc²? И почему это должно нас волновать краткое содержание
Книга будет полезна всем, кто интересуется устройством мира.
Почему Е=mc²? И почему это должно нас волновать - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:

Рис. 19

Рис. 20
Но вернемся к дейтрону. На рис. 19 показано, как он может образоваться в результате столкновения двух протонов. Кроме того, в каждом случае такого слияния можно обнаружить один антиэлектрон (позитрон) и одно нейтрино. Как мы уже отмечали, нейтрино поддерживают очень слабое взаимодействие со всеми остальными частицами Вселенной. Согласно основному уравнению именно так все и происходит, потому что нейтрино – единственная частица, которая вступает только в слабое взаимодействие. В итоге нейтрино, которые рождаются в сердце звезды, могут без всяких усилий сбежать от нее – они разлетаются во всех направлениях, а некоторые отправляются в сторону Земли. Подобно Солнцу, Земля для нейтрино почти прозрачна, и они проходят сквозь нее, даже не замечая, что она встретилась им на пути. Вместе с тем у каждого нейтрино все же есть небольшой шанс вступить во взаимодействие с атомом на Земле. Выше уже упоминалось, что это взаимодействие обнаруживается с помощью таких установок, как детектор Super-Kamiokande.
Как мы можем быть уверены в правильности стандартной модели, во всяком случае на том уровне точности, который обеспечивает современная экспериментальная база? На протяжении многих лет стандартную модель подвергали самым строгим тестам в разных лабораториях мира. Не стоит беспокоиться о том, что ученые предвзято относятся к этой теории. Те, кто проводит такие испытания, очень хотели бы найти слабые места или недостатки в стандартной модели и делают все возможное, чтобы ее развалить. Их мечта – хотя бы на мгновение увидеть новые физические процессы, которые могут открыть поражающие воображение новые перспективы и величественную картину внутреннего устройства Вселенной. Однако до настоящего времени стандартная модель выдержала все испытания.
Большой адронный коллайдер – самая последняя из крупных установок, используемых для проверки стандартной модели. Этот проект, в рамках которого сотрудничают ученые всего мира, преследует цель либо подтвердить, либо опровергнуть стандартную модель (немного ниже мы еще вернемся к БАК). Предшественником БАК был большой электрон-позитронный коллайдер (БЭПК), с помощью которого удалось провести ряд тонких тестов. Он находился внутри кольцевого тоннеля длиной 27 километров, вырытого под Женевой и несколькими живописными французскими деревнями. Этот коллайдер исследовал мир стандартной модели на протяжении 11 лет, с 1989 по 2000 год. Сильные электрические поля использовались для ускорения пучков электронов в одном направлении, а позитронов – в другом. Грубо говоря, ускорение заряженных частиц с помощью электрических полей напоминает механизм, применяемый в устаревших телевизионных приемниках с электронно-лучевыми трубками для выброса электронов на экран и создания изображения. Электроны выбрасываются с тыльной стороны устройства (поэтому старые телевизоры такие громоздкие), затем ускоряются электрическим полем и попадают на экран телевизора. Под воздействием магнита пучок электронов перемещается по экрану, создавая изображение.
В БЭПК также использовались магнитные поля, на этот раз для того, чтобы заставить частицы двигаться по кругу в соответствии с изгибом тоннеля. Весь смысл этой затеи состоял в том, чтобы устроить столкновение двух пучков частиц. Как мы уже знаем, столкновение электрона и позитрона может привести к аннигиляции обеих частиц, в результате которой их масса превратится в энергию. Именно эта энергия больше всего интересовала физиков, работавших с БЭПК, поскольку, согласно правилам Фейнмана, ее можно было бы превратить в более тяжелые частицы. На первом этапе работы ускорителя энергия электрона и позитрона очень близка к тому значению, которое существенно увеличивает вероятность создания частицы Z (вы можете просмотреть список правил Фейнмана в стандартной модели и убедиться, что аннигиляция электрон-позитронной пары, приводящая к рождению частицы Z , разрешена). На самом деле у частицы Z достаточно большая масса по сравнению с другими частицами: она почти в 100 раз тяжелее протона и примерно в 200 тысяч раз – электрона и позитрона. Следовательно, для того чтобы рождение частицы Z стало возможным, электрон и позитрон необходимо сталкивать друг с другом на скорости, очень близкой к скорости света. Безусловно, энергии, которая заключена в массе этих частиц и высвобождается после их аннигиляции, совершенно недостаточно для создания частицы Z .
Первоначальная цель, стоявшая перед БЭПК, была достаточно проста: вырабатывать частицы Z посредством многократного столкновения электронов и позитронов. При каждом столкновении пучков частиц существует довольно большая вероятность, что электрон из одного пучка аннигилирует с позитроном из другого пучка, что приведет к рождению одной частицы Z . Выстреливая эти пучки друг навстречу другу с большой скоростью, БЭПК за весь период существования смог образовать более 20 миллионов частиц Z в процессе аннигиляции электрон-позитронной пары.
Подобно другим частицам стандартной модели, частица Z нестабильна: она живет всего 10–25 секунды, прежде чем погибнуть. На рис. 21 показаны возможные варианты процесса создания частицы Z , которые представляли интерес для полутора тысяч физиков, работавших с БЭПК, не говоря уже о многих тысячах физиков по всему миру, с нетерпением ожидавших результатов. Благодаря использованию огромных детекторов частиц, окружающих точку столкновения и аннигиляции электрона и позитрона, специалисты по физике элементарных частиц смогли обнаружить и идентифицировать то, что образуется в процессе распада частицы Z . Современные детекторы, применяемые в физике элементарных частиц (такие как БЭПК), немного напоминают огромные многометровые цифровые фотоаппараты. Подобно самим ускорителям, эти детекторы представляют собой выдающееся достижение современного инженерного искусства. Расположенные в пещерах размером с собор, они могут с чрезвычайно высокой точностью измерить энергию и импульс единственной субатомной частицы. Эти установки – воплощение передовой инженерной мысли, что делает их прекрасным памятником нашего коллективного стремления к исследованию устройства Вселенной.

Рис. 21
Вооружившись этими детекторами и огромным парком высокопроизводительных компьютеров, ученые поставили перед собой одну из основных задач, решение которой подразумевало достаточно простую стратегию. Им необходимо было проанализировать полученные данные и идентифицировать столкновения, приводившие к рождению частицы Z , а затем определить характер ее распада для каждого такого столкновения. Иногда распад частицы Z приводил к образованию электрон-позитронной пары. А иногда – к созданию кварка и антикварка или, возможно, мюона и антимюона (см. рис. 21). Работа ученых сводилась к тому, чтобы подсчитать количество случаев распада частицы Z в соответствии с каждым из возможных сценариев, предусмотренных стандартной моделью, и сравнить полученные результаты с ожидаемыми показателями, предсказанными теорией. Имея в своем распоряжении данные о более чем 20 миллионах частиц Z , ученые смогли провести достаточно строгую проверку корректности стандартной модели. Как и следовало ожидать, ее результаты показали, что теория работает превосходно. Этот процесс, называемый измерением парциальной ширины, стал одним из самых важных испытаний стандартной модели, выполненных с помощью БЭПК. Впоследствии проводились еще многие испытания, и во всех случаях стандартная модель оказывалась верной. Когда в 2000 году БЭПК был закрыт, полученные с его помощью сверхточные данные позволили проверить стандартную модель с точностью 0,1 процента.
Читать дальшеИнтервал:
Закладка: