Николя Жизан - Квантовая случайность. Нелокальность, телепортация и другие квантовые чудеса
- Название:Квантовая случайность. Нелокальность, телепортация и другие квантовые чудеса
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2016
- Город:Москва
- ISBN:978-5-9614-2389-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Николя Жизан - Квантовая случайность. Нелокальность, телепортация и другие квантовые чудеса краткое содержание
Квантовая случайность. Нелокальность, телепортация и другие квантовые чудеса - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Законы физики работают и в обратном направлении. Это означает, что если некий элементарный процесс может идти в одном направлении, то должен быть возможен и обратный процесс. Следовательно, должна существовать возможность послать зеленый фотон в нелинейный кристалл и получить два инфракрасных фотона. И это будет процесс образования фотонных пар [43] В зависимости от того, какой тип нелинейного кристалла мы используем, эти два фотона не обязательно будут иметь тот же самый средний цвет. К примеру, один из них может быть слабым инфракрасным, то есть содержащим немного красного, а другой – сильным инфракрасным и, соответственно, совершенно невидимым для человеческого глаза. Эта разница в цвете и, следовательно, в энергии может быть значительной, в частности больше, чем неопределенность в энергиях каждого из фотонов, хотя мы продолжаем называть их инфракрасными. Благодаря этой разнице два фотона могут быть разделены, и мы можем послать слабый инфракрасный фотон Алисе, а сильный инфракрасный – Бобу. Для этого мы направляем фотоны в оптоволоконные кабели, такие же, которые вы используете каждый день, когда сидите в Интернете, смотрите телевизор или звоните приятелю. В реальном эксперименте инфракрасные фотоны подгонялись под характеристики оптоволоконных кабелей, так что их называли телекоммуникационными фотонами. Их цвет должен быть таким, чтобы оптоволокно телекоммуникационной сети оказалось максимально прозрачным.
.
Создание запутанности
Осталось понять, почему эти фотоны запутаны. Чтобы это понять, вспомним, что квантовые частицы вроде фотонов обычно имеют неопределимые физические характеристики (положение в пространстве, скорость, энергия и т. д.). К примеру, фотон обладает некоторой энергией, но эта энергия неопределима. В среднем энергия фотона может принимать то или иное значение, но с неопределимостью, которая может быть очень существенной. Дело не в том, что мы не можем точно определить энергию фотона, а в том, что эта неопределимость является неотъемлемым свойством фотона, который сам «не знает», какую энергию несет. Короче говоря, фотон не обладает неким точным значением энергии, а имеет целый спектр потенциально возможных значений (так же как позиция электрона в главе 5). Если мы очень точно измеряем энергию фотона, мы получаем случайный результат из целого спектра возможностей – истинно случайный, как мы говорили выше, результат. Следует понимать, что для воспроизведения истинной случайности, которая, как мы видели, необходима для победы в игре Белла, определенные физические величины не должны иметь точно определенных значений. Они должны быть неопределимыми и принимать точное значение лишь тогда, когда делается точное измерение. Какое точное значение? А вот это – уже квантовая случайность.
Как энергия, так и возраст фотона, а именно время, прошедшее с момента, когда он был испущен источником света, также может быть неопределим. Потенциальный возраст фотона может варьировать от нескольких миллиардных долей секунды вплоть до нескольких секунд, в зависимости от того, каким образом этот фотон был излучен. Знаменитое соотношение неопределенности Гейзенберга (см. справку 8) для фотонов гласит, что чем точнее определен возраст фотона, тем выше неопределимость его энергии. И наоборот, чем точнее мы знаем его энергию, тем выше неопределимость его возраста.
Но вернемся к нелинейным кристаллам и парам фотонов, которые они производят. Представьте, что нелинейный кристалл возбуждается зеленым фотоном с очень точно определенным значением энергии, то есть с очень низкой неопределимостью энергии. Этот фотон превращается в два инфракрасных фотона, каждый из которых обладает неопределимой энергией, но при этом сумма этих энергий в точности равна энергии первоначального зеленого фотона. Мы получаем два инфракрасных фотона, каждый с неопределимой энергией, но сумма этих двух энергий определена очень точно.
Таким образом, энергии двух фотонов коррелируют. Если мы измерим эти энергии и обнаружим, что у одного из них значение энергии выше среднего, то значение энергии у другого обязательно будет ниже среднего. Удивительное свойство нелокальности: энергия одного фотона, изначально неопределимая, может быть определена в результате измерения энергии другого фотона.
Но этого все еще недостаточно. Чтобы играть в игру Белла, мы должны иметь возможность выбора по меньшей мере из двух типов измерений – они будут соответствовать двум положениям джойстика. Так как мы очень точно знаем энергию исходного зеленого фотона, то, в соответствии с принципом неопределенности Гейзенберга, его возраст соответственно неопределим. А что мы можем сказать о паре инфракрасных фотонов? Поскольку их энергии неопределимы, их возраст мы можем определить довольно точно – в действительности даже более точно, чем возраст зеленого фотона.
Но может ли один из инфракрасных фотонов быть старше другого? Ответ: не может, ведь так могло получиться лишь в том случае, если бы этот фотон возник в кристалле раньше другого. Но если бы один из инфракрасных фотонов появился раньше другого, то это означало бы, что в короткий интервал времени между их появлениями не действовал закон сохранения энергии, а это невозможно. Два инфракрасных фотона должны появиться одновременно, ровно в тот момент, когда распался зеленый фотон. Так в какой именно момент появляются инфракрасные фотоны? Ответ таков: момент появления двух инфракрасных фотонов неопределим, так же как и возраст зеленого фотона.
Итак, два инфракрасных фотона имеют одинаковый возраст, но этот возраст неопределим. Если мы измерим возраст одного из них, мы получим истинно случайный результат. Но с этого момента возраст второго фотона становится определенным. Это и есть вторая квантовая корреляция, которая необходима, чтобы играть и выиграть [44] Если мы принимаем соотношение неопределенности Гейзенберга, а следовательно, то, что квантовая физика по природе своей рождает случайные результаты, тогда нам не понадобятся две физические величины, такие как энергия и возраст фотона. Для демонстрации нелокальности квантовой физики будет достаточно одной. Но если бы у нас не было двух значений, никто не поверил бы в истинную случайность, потому что нам могли возразить, например, что значение энергии каждого фотона было вполне определимо, просто нам оно не известно. Только благодаря игре Белла, в которой Алиса и Боб обязательно должны выбирать по крайней мере из двух вариантов, мы можем убедиться в существовании истинной случайности и в справедливости соотношения неопределенности Гейзенберга.
.
Интервал:
Закладка: