Дэйв Голдберг - Вселенная в зеркале заднего вида. Был ли Бог правшой? Или скрытая симметрия, антивещество и бозон Хиггса

Тут можно читать онлайн Дэйв Голдберг - Вселенная в зеркале заднего вида. Был ли Бог правшой? Или скрытая симметрия, антивещество и бозон Хиггса - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство АСТ, год 2015. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Вселенная в зеркале заднего вида. Был ли Бог правшой? Или скрытая симметрия, антивещество и бозон Хиггса
  • Автор:
  • Жанр:
  • Издательство:
    АСТ
  • Год:
    2015
  • Город:
    Москва
  • ISBN:
    978-5-17-090528-7
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Дэйв Голдберг - Вселенная в зеркале заднего вида. Был ли Бог правшой? Или скрытая симметрия, антивещество и бозон Хиггса краткое содержание

Вселенная в зеркале заднего вида. Был ли Бог правшой? Или скрытая симметрия, антивещество и бозон Хиггса - описание и краткое содержание, автор Дэйв Голдберг, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Не любите физику? Вы просто не читали книги Дэйва Голдберга! Эта книга познакомит вас с одной из самых интригующих тем современной физики — фундаментальными симметриями. Ведь в нашей прекрасной Вселенной практически все — от антивещества и бозона Хиггса до массивных скоплений галактик — формируется на основе скрытых симметрий! Именно благодаря им современные ученые делают свои самые сенсационные открытия.
Можно ли создать устройство для мгновенной передачи информации? Что будет, если Землю засосет в черную дыру? Что не рассказывают на школьных уроках о времени и пространстве? Читайте, и вы узнаете ответы на эти вопросы. Это понятно, увлекательно, это может быть смешно — именно так вы теперь будете думать о физике.

Вселенная в зеркале заднего вида. Был ли Бог правшой? Или скрытая симметрия, антивещество и бозон Хиггса - читать онлайн бесплатно полную версию (весь текст целиком)

Вселенная в зеркале заднего вида. Был ли Бог правшой? Или скрытая симметрия, антивещество и бозон Хиггса - читать книгу онлайн бесплатно, автор Дэйв Голдберг
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

1. Уравнения движения, описывающие фотонное поле.

2. Энергию взаимодействия между фотонами и заряженными частицами.

Все просто раз — и возникает как по волшебству. Уравнения воспроизводят все уравнения Максвелла прямо из основных принципов. Они предсказывают, что фотон должен быть частицей со спином‑1 и вообще без массы — и эти предсказания идеально подтверждаются экспериментами.

Строго говоря, все это не предсказания, а пост сказания. Мы и раньше знали, на что похожи фотоны и электромагнетизм. Тем не менее красота симметричного подхода состоит в том, что мы получаем все, буквально все законы электромагнетизма из простого предположения о симметрии. Недостает одной-единственной детали: заряд электрона, силу, с которой заряженные частицы взаимодействуют с электромагнитным полем, приходится вводить вручную. Эта теория неимоверно красива, но чтобы у вас защекотало шестое чувство, поясню: каждый раз, когда вы сталкиваетесь с теорией, где есть какое-то число, которое приходится подстраивать вручную, это вернейший признак того, что история еще не закончена.

Почему в самом деле существует два разных типа частиц?

С электромагнетизмом нам крупно повезло.

Максвелл подарил нам свои уравнения еще в XIX веке, и хотя переформулировать их в рамках фазовой симметрии и в самом деле значительное интеллектуальное достижение, честное слово, куда как проще решать задачу, когда заранее знаешь ответ. И все равно это была отнюдь не только математика ради математики — это открытие пробудило к жизни идею, что симметрии могут генерировать и другие силы (осторожно, спойлер: так и есть на самом деле).

В 1954 году Янь Чжэньнин и Роберт Л. Миллс из Брукхейвена разработали общий механизм перевода симметрий в силы. Янь и Миллс были интеллектуальными наследниками Эмми Нётер и довели ее увлечение симметриями и инвариантами до поистине эшеровского предела.

Вспомним, что Нётер говорила, что если у вас есть симметрия, то есть и сохраняемая величина. Янь и Миллс утверждали, что если предположить, что калибровочная симметрия имеет место — ну, вроде фокуса, когда подкладывают магниты, чтобы сбить компас, — значит, должна быть хотя бы одна частица-переносчик взаимодействия, а может быть, и несколько. Иначе говоря, симметрия не просто дает нам законы сохранения. Согласно Яню и Миллсу, если предполагаешь наличие симметрии, то получаешь фундаментальное взаимодействие от и до.

Легко сказать, но трудно сделать [99] Да, я отдаю себе отчет, что все это уже страшно запутанно. . Симметрий у математиков целая куча, многие из них до ужаса абстрактны, а большинство имеет очень мало отношения к реальной жизни, а то и вообще никакого. К счастью, во вселенной есть кое-какие подсказки по поводу того, как должны работать симметрии.

Возьмите слабое взаимодействие. Прошу вас.

Без слабого взаимодействия нам совсем не жить. Это механизм, который пережигает водород в гелий и в процессе превращает протоны в нейтроны. Именно эти частицы обычно привлекают к себе больше всего внимания, однако и мелкие игроки — нейтрино и позитроны — тоже его заслуживают. Красноречивая деталь: похоже, везде, где возникает слабое взаимодействие, замешаны нейтрино или антинейтрино. Судя по всему, они постоянно маячат в тех местах, где электроны тоже чувствуют себя как дома.

Нейтрино связаны с электронами очень тесно. Наглядное тому свидетельство мы видим в зоопарке частиц. Фермионы собраны в пары. Это не просто условность, а еще одна симметрия.

Симметрии электрона и нейтрино математики тоже подобрали особое название. Они именуют ее SU (2). Может быть, вас несколько примирит с действительностью мысль о том, что мы эту симметрию уже видели, просто совсем в другом контексте. Это та самая симметрия, которая описывает спин. Электроны могут обладать и спином вверх, и спином вниз, и любым их сочетанием. Кроме того, мы видели, что неважно, в каком состоянии электрон находится. Если я превращу все «вверх» во «вниз» и наоборот, все взаимодействия, в сущности, останутся прежними.

Подобие это настолько идеальное, что эквивалент электрического заряда называют слабым изоспином . Точно так же как электрон со спином вверх и электрон со спином вниз имеют полный спин ½ независимо от направления, вверх в данном случае соответствует нейтрино, а вниз — электрону, и слабое взаимодействие способно превратить один вид в другой. Если бы вы превратили все электроны в нейтрино и наоборот во всей вселенной, слабое взаимодействие и ухом бы не повело.

Вообще-то это довольно странное открытие. В нормальной обстановке электроны и нейтрино совсем не похожи друг на друга. Все дело в том, что нашим миром в основном правит электромагнетизм, а он неизмеримо сильнее слабого взаимодействия. В электромагнетизме электрон и нейтрино и правда совсем разные. У одного есть заряд, а у другого нет.

Главное — у нас есть симметрия, а из симметрии мы получаем сохраняемую величину [100] Спасибо, Эмми Нётер! :

Симметрия электрона и нейтрино → сохранение слабого изоспина

Слабое взаимодействие ведет себя практически так же, как электрический заряд в электромагнетизме. Оно говорит нам о том, как взаимодействуют друг с другом разнообразные частицы. А кроме того, поскольку слабое взаимодействие устроено несколько сложнее, у него есть и другое свойство под названием слабый гиперзаряд , который, если не вглядываться, подозрительно напоминает обычный электрический заряд.

А еще у нас есть частицы-переносчики взаимодействия. В слабом взаимодействии они называются бозонами W +, W —и Z 0и, как нам вскоре предстоит убедиться, ведут себя несколько сложнее, чем мы надеялись. Вот, например, среди частиц, участвующих в слабом взаимодействии свирепствует эпидемия ожирения, к которой Янь и Миллс готовы не были.

Почему атомы не взрываются?

Прежде чем мы окончательно отшлифуем стандартную модель, нужно закончить инвентаризацию. Электронами и нейтрино дело не ограничивается. Например, из них нельзя сделать атом. Составляющие атомов — протоны и нейтроны — представляют собой довольно-таки очевидную симметрию. Как выразился Дэвид Гриффитс, физик из Рид-колледжа:

У нейтрона есть одна поразительная особенность, которую заметил еще Гейзенберг вскоре после открытия этой частицы в 1932 году: помимо очевидного факта, что нейтрон не обладает зарядом, он практически идентичен протону… Гейзенберг предложил считать нейтроны и протоны двумя «состояниями» одной и той же частицы — нуклеона.

Разница в массе между нейтронами и протонами составляет всего-навсего около 0,1 %. А еще, как мы видели, они очень тесно связаны, поскольку первые могут распадаться на вторые. И это неудивительно, поскольку нейтроны и протоны сделаны, в общем-то, из одного теста.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Дэйв Голдберг читать все книги автора по порядку

Дэйв Голдберг - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Вселенная в зеркале заднего вида. Был ли Бог правшой? Или скрытая симметрия, антивещество и бозон Хиггса отзывы


Отзывы читателей о книге Вселенная в зеркале заднего вида. Был ли Бог правшой? Или скрытая симметрия, антивещество и бозон Хиггса, автор: Дэйв Голдберг. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x