Брайан Грин - Ткань космоса. Пространство, время и текстура реальности
- Название:Ткань космоса. Пространство, время и текстура реальности
- Автор:
- Жанр:
- Издательство:Книжный дом «ЛИБРОКОМ»
- Год:2009
- Город:Москва
- ISBN:978-5-397-00001-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Брайан Грин - Ткань космоса. Пространство, время и текстура реальности краткое содержание
В книге рассматриваются фундаментальные вопросы, касающиеся классической физики, квантовой механики и космологии. Что есть пространство? Почему время имеет направление? Возможно ли путешествие в прошлое? Какую роль играют симметрия и энтропия в эволюции космоса? Что скрывается за тёмной материей? Может ли Вселенная существовать без пространства и времени?
Грин детально рассматривает картину мира Ньютона, идеи Маха, теорию относительности Эйнштейна и анализирует её противоречия с квантовой механикой. В книге обсуждаются проблемы декогеренции и телепортации в квантовой механике. Анализируются многие моменты инфляционной модели Вселенной, первые доли секунды после Большого взрыва, проблема горизонта, образование галактик. Большое внимание уделено новому современному подходу к объяснению картины мира с помощью теории струн/М-теории.
Грин показывает, что наш мир сильно отличается от того, к чему нас приучил здравый смысл. Автор увлекает всех нас, невзирая на уровень образования и научной подготовки, в познавательное путешествие к новым пластам реальности, которые современная физика вскрывает под слоем привычного нам мира.
Ткань космоса. Пространство, время и текстура реальности - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
78
Фактически, поскольку законы физики не различают направления вперёд и назад во времени, объяснение полностью сформированных кубиков льда получасом раньше, в 10:00 вечера, будет точно в той же степени абсурдным (говоря на языке энтропии), как и предсказание, что на полчаса позже, в 11:00 вечера, маленькие кусочки льда вырастут в полностью сформированные кубики льда. Напротив, объяснение, что в 10:00 вечера была жидкая вода, из которой медленно формируются маленькие кусочки льда к 10:30 вечера, является ровно столь же осмысленным, как и предсказание, что в 11:00 вечера маленькие кусочки льда растают в жидкую воду, что является привычным и полностью ожидаемым. Это последнее объяснение с точки зрения наблюдения в 10:30 вечера является совершенно симметричным во времени и, более того, согласуется с последующими наблюдениями.
79
Особенно внимательный читатель может подумать, что фразой «специфическое прошлое» я внёс необъективность, поскольку тем самым ввёл временну́ю асимметрию. Выражаясь более точно, я имел в виду, что нужны специальные условия, преобладающие (по крайней мере) на одном из концов временного измерения. Как станет ясно, специальные условия означают граничное условие низкой энтропии, и я буду называть «прошлым» направление, в котором это условие выполняется.
80
Идея, что стрела времени требует низкоэнтропийного прошлого, имеет долгую историю, восходя к Больцману и другим; она обсуждалась в некоторых деталях в книге: Рейхенбах Г. Направление времени. М.: URSS, 2003. и отстаивалась особенно интересным количественным методом в книге: Пенроуз Р. Новый ум короля. М.: URSS, 2008. С. 293–297.
81
Вспомним, что наше обсуждение в этой главе не принимает во внимание квантовую механику. Как показал Стивен Хокинг в 1970-е гг., когда рассматриваются квантовые эффекты, чёрные дыры позволяют некоторому количеству радиации просачиваться наружу, но это не влияет на их статус самых высокоэнтропийных объектов в космосе.
82
Естественный вопрос заключается в том, откуда мы знаем, что не существуют некоторые будущие ограничения, которые также имеют влияние на энтропию. По правде говоря, мы этого не знаем, и некоторые физики даже предлагали эксперименты, чтобы обнаружить возможное влияние, которое такие будущие ограничения могли бы оказывать на вещи, которые мы можем наблюдать сегодня. Интересная статья, обсуждающая возможность будущих и прошлых ограничений на энтропию, — Gell-Mann М. and Hartle J. Time Symmetry and Asymmetry in Quantum Mechanics and Quantum Cosmology, in Physical Origins of Time Asymmetry . J. J. Halliwell, J. Perez-Mercader, W. H. Zurek, eds. Cambridge, Eng.: Cambridge University Press, 1996, а также другие статьи в частях 4 и 5 этого сборника.
83
На протяжении этой главы мы говорили о стреле времени, ссылаясь на очевидный факт, что имеется асимметрия вдоль оси времени (оси времени любого наблюдателя) пространства-времени: гигантское разнообразие последовательностей событий выстраивается в одном порядке вдоль оси времени, но обратное упорядочение таких событий появляется редко, если вообще появляется. На протяжении многих лет физики и философы делили эти последовательности событий на подкатегории, для которых временна́я асимметрия может, в принципе, быть объяснена логически независимым образом. Например, тепло перетекает от горячих объектов к более холодным, но не от холодных объектов к горячим; электромагнитные волны испускаются наружу из источников вроде звёзд и электрических лампочек, но, кажется, никогда не собираются внутрь таких источников; Вселенная выглядит однородно расширяющейся, но не сжимающейся; и мы помним прошлое, но не будущее (это называется, соответственно, термодинамической, электромагнитной, космологической и психологической стрелой времени). Все эти явления асимметричны во времени, но они могут, в принципе, получать свою временну́ю асимметрию благодаря совершенно разным физическим принципам. Моя точка зрения, которую многие разделяют (но другие — нет), состоит в том, что, исключая, возможно, космологическую стрелу времени, эти явления временно́й асимметрии фундаментально не отличаются и, в конце концов, поддаются одинаковому объяснению — которое мы описываем в этой главе. Например, почему электромагнитное излучение распространяется в виде расходящихся волн, но не в виде сходящихся волн, хотя оба вида волн являются совершенно правильными решениями уравнений электромагнетизма Максвелла? Да потому, что наша Вселенная имеет низкоэнтропийные, когерентные, упорядоченные источники таких расходящихся волн — звёзды и электрические лампочки, например, — и существование этих упорядоченных источников является результатом ещё более упорядоченного окружения в отправной точке Вселенной, как обсуждается в тексте. Психологическая стрела времени труднее для понимания, поскольку тут очень многое связано с микропсихическими основами человеческого мышления, которые нам ещё предстоит понять. Но большой прогресс в понимании стрелы времени имеет место в её отношении к компьютерам — выполнение и завершение вычислений, запись результатов есть основная вычислительная последовательность, энтропийные свойства которой хорошо поняты (в работах Чарльза Беннета, Рольфа Ландауера и др.) и тесно связаны со вторым началом термодинамики. Таким образом, если человеческое мышление может быть связано с вычислительным процессом, то может быть применено и сходное термодинамическое объяснение. Отметим также, что асимметрия, связанная с тем фактом, что Вселенная расширяется, а не сжимается, связана со стрелой времени, которую мы исследовали, но логически отличается от неё. Если расширение Вселенной замедлится, остановится, а затем повернёт к сжатию, стрела времени всё ещё будет указывать в том же направлении. Физические процессы (разбивание яиц, старение людей и т. д.) всё ещё будут происходить в обычном направлении, даже если расширение Вселенной сменится сжатием.
84
Для склонного к математике читателя отметим, что, когда мы делаем такой вид вероятностного утверждения, мы предполагаем особую меру вероятности: такую, которая однородна относительно всех микросостояний, совместимых с тем, что мы видим прямо сейчас. Имеются, конечно, другие меры, которые можно было бы использовать. Например, Дэвид Альберт (Albert D. в Time and Chance ) отстаивает использование вероятностной меры, которая однородна по всем микросостояниям, совместимым с тем, что мы видим сейчас, и с тем, что он называет гипотезой о прошлом, — с очевидным фактом, что Вселенная началась с низкоэнтропийного состояния. Используя эту меру, мы удаляем из рассмотрения все истории, кроме тех, которые совместимы с низкоэнтропийным прошлым, подтверждаемым нашей памятью, записями и космологическими теориями. При таком способе мышления вероятностной загадки по поводу Вселенной с низкой энтропией нет; Вселенная начала этот путь, по предположению, с вероятностью 1. Остаётся, правда, всё та же гигантская головоломка, почему она начала таким образом, хотя это и не озвучивается явно в вероятностном контексте.
Читать дальшеИнтервал:
Закладка: