Брайан Грин - Ткань космоса. Пространство, время и текстура реальности
- Название:Ткань космоса. Пространство, время и текстура реальности
- Автор:
- Жанр:
- Издательство:Книжный дом «ЛИБРОКОМ»
- Год:2009
- Город:Москва
- ISBN:978-5-397-00001-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Брайан Грин - Ткань космоса. Пространство, время и текстура реальности краткое содержание
В книге рассматриваются фундаментальные вопросы, касающиеся классической физики, квантовой механики и космологии. Что есть пространство? Почему время имеет направление? Возможно ли путешествие в прошлое? Какую роль играют симметрия и энтропия в эволюции космоса? Что скрывается за тёмной материей? Может ли Вселенная существовать без пространства и времени?
Грин детально рассматривает картину мира Ньютона, идеи Маха, теорию относительности Эйнштейна и анализирует её противоречия с квантовой механикой. В книге обсуждаются проблемы декогеренции и телепортации в квантовой механике. Анализируются многие моменты инфляционной модели Вселенной, первые доли секунды после Большого взрыва, проблема горизонта, образование галактик. Большое внимание уделено новому современному подходу к объяснению картины мира с помощью теории струн/М-теории.
Грин показывает, что наш мир сильно отличается от того, к чему нас приучил здравый смысл. Автор увлекает всех нас, невзирая на уровень образования и научной подготовки, в познавательное путешествие к новым пластам реальности, которые современная физика вскрывает под слоем привычного нам мира.
Ткань космоса. Пространство, время и текстура реальности - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Однако ключевая проблема, которую я обошёл в обсуждении, заключается в том, что хотя декогеренция подавляет квантовую интерференцию и поэтому заставляет таинственные квантовые вероятности быть похожими на их привычных классических двойников, каждый потенциальный результат, включённый в волновую функцию, всё ещё соперничает за реализацию . Так что мы всё ещё остаёмся в неведении, какой результат «победит» и куда «уйдут» другие возможности, когда это реально произойдёт. Когда подбрасывается монета, классическая физика даёт ответ на аналогичный вопрос. Она говорит, что если вы исследуете способ, которым подброшена монета, вы можете, в принципе, с адекватной точностью предсказать , упадёт она орлом или решкой. Следовательно, более внимательный анализ показывает, что деталями, которые вы сначала упустили, был определён в точности один результат. В квантовой физике нельзя сказать то же самое. Декогеренция позволяет интерпретировать квантовые вероятности почти как классические, но не даёт точных деталей, которые объясняют, как из множества возможных исходов выбирается один для действительной реализации.
Почти в духе Бора некоторые физики думают, что поиски объяснений таких вещей, как причина возникновения отдельного определённого результата, неконструктивны. Эти физики утверждают, что квантовая механика, дополненная теорией декогеренции, является жёстко сформулированной теорией, предсказания которой описывают поведение лабораторных измерительных приборов. И, в соответствии с этой точкой зрения, это и есть цель науки. Попытки отыскать объяснение, что реально происходит , попытки побороться за понимание, как получился частный результат в опыте , попытки отыскать другой уровень реальности за показаниями детектора и компьютерными распечатками представляются как неоправданная интеллектуальная жадность.
Многие другие, включая меня, придерживаются другого взгляда. Объяснение данных — вот что является предметом науки. Многие физики думают, что наука должна включать в себя также и теории, которые, подтверждая экспериментальные данные, идут дальше к максимальному проникновению в природу реальности. Я сильно подозреваю, что ещё многое предстоит понять, чтобы сдвинуться в направлении полного решения проблемы измерений.
Так что, хотя многие согласны, что вызванная окружающей средой декогеренция является важнейшей частью структуры, перекидывающей мост над пропастью между квантовым и классическим, и в то время как многие надеются, что эти соображения однажды приведут к полной и убедительной связи между этими двумя областями, далеко не каждый убеждён, что мост уже полностью построен.
Квантовая механика и стрела времени
Итак, в каком же состоянии находится проблема измерений и что это означает для стрелы времени? Грубо говоря, имеется два класса предложений, для того чтобы связать здравый смысл с квантовой реальностью. В первом классе (например, волновая функция как знание, многомировая интерпретация, декогеренция) нет ничего, кроме уравнения Шрёдингера; все предложения просто обеспечивают различные способы интерпретации того, что уравнение означает для физической реальности.
Во втором классе (например, Бом, Жирарди–Римини–Вебер) уравнение Шрёдингера должно быть дополнено другими уравнениями (в случае подхода Бома уравнением, которое показывает, как волновая функция направляет частицу в её движении) или должно быть модифицировано (в случае подхода Жирарди–Римини–Вебера путём включения нового явного механизма коллапса). Ключевой вопрос для определения того, как эти предложения влияют на стрелу времени, заключается в том, вводят ли они фундаментальную асимметрию между разными направлениями во времени. Вспомним, что уравнение Шрёдингера, равно как и уравнения Ньютона, Максвелла и Эйнштейна, рассматривает прямое и обратное направления во времени совершенно одинаково. Это не обеспечивает стрелы для эволюции во времени. Меняют ли это положение какие-либо из предложений решения проблемы измерения?
В первом классе предложений шрёдингеровская система взглядов совсем не модифицируется, так что симметрия времени сохраняется. Во втором классе симметрия времени может уцелеть, а может и не уцелеть, в зависимости от деталей. Например, подход Бома, предложившего новое уравнение, трактует будущее и прошлое на равных основаниях, так что не вводит асимметрии. Однако предложение Жирарди–Римини–Вебера вводит механизм коллапса, который выделяет стрелу времени — «расколлапсирование», когда волновая функция изменяется от пикообразной формы, являющейся результатом коллапса, к распределённой форме без резких пиков, не удовлетворяя модифицированным уравнениям Шрёдингера. Так что, в зависимости от конкретного предложения, квантовая механика, вместе с решением загадки квантового измерения, либо трактует каждое направление времени одинаково, либо нет. Рассмотрим следствия каждой возможности.
Если симметрия времени сохраняется (я полагаю, так и будет), все обоснования и все заключения прошлой главы могут быть использованы с минимальными изменениями и для квантовой области. Суть той физики, которая инициировала наше обсуждение стрелы времени, заключалась в симметрии классической физики по отношению к обращению времени. В то время как язык и структура квантовой физики отличаются от классической физики — волновые функции вместо положений и скоростей; уравнение Шрёдингера вместо законов Ньютона, — симметрия по отношению к обращению времени всех квантовых уравнений гарантирует, что трактовка стрелы времени остаётся без изменений. Энтропия в квантовом мире может быть определена в основном так же, как в классической физике при условии, что мы описываем частицы в терминах их волновых функций. И вывод, что энтропия должна всегда возрастать, — как в направлении, которое мы называем будущим, так и в направлении, которое мы называем прошлым, — всё ещё будет действителен.
Так что мы приходим к той же головоломке, с которой мы столкнулись в главе 6. Если мы принимаем наши наблюдения мира прямо сейчас как данные, как неоспоримо реальные, и если энтропия должна возрастать как по направлению в будущее, так и по направлению в прошлое, как мы объясним, что мир имеет вид, который он имеет, и как он будет в последующем разворачиваться во времени? Снова присутствуют те же две возможности: или всё, что мы видим, неожиданно появилось в результате статистической флуктуации, возникновение которой можно ожидать время от времени в вечной Вселенной, которая растрачивает впустую значительную часть своего времени, оставаясь полностью разупорядоченной, или по некоторым причинам энтропия была поразительно низкой сразу после Большого взрыва и поэтому последние 14 млрд лет всё могло медленно развиваться и продолжит развиваться в будущем. Как и в главе 6, чтобы избежать трясины неверия в память и в записи и в законы физики, мы выберем вторую альтернативу — низкоэнтропийный взрыв — и попытаемся найти объяснение, как и почему всё началось в таком особом состоянии.
Читать дальшеИнтервал:
Закладка: