Лекции по схемотехнике
- Название:Лекции по схемотехнике
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Лекции по схемотехнике краткое содержание
Лекции по схемотехнике - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Многоразрядные АЛУ выпускаются в виде интегральных микросхем или входят в состав процессоров, являясь их основой.
МС 564ИП3 (Рисунок 26,а) — это 4-разрядное параллельное АЛУ, выполняющая 16 арифметических и 16 логических операций.

Рисунок 26 Схема 4-разрядного АЛУ 564ИП3 а) и схема ускоренного переноса 564ИП4 б).
A( а 0–а 3 ) — первый операнд,
B( b 0–b 3 ) — второй операнд,
S( s 0–s 3 ) — код операции — 4 разряда.
Если M=0, то выполняются арифметические операции: 2 4=16, при M=1 выполняются логические операции: 2 4=16. Итого 16+16=32 операции.
F( f 0–f3 ) — результат операции. На выходе A=B появляется «1», если при выполнении операции вычитания результат операции будет равен «0», то есть A=B. Поскольку АЛУ параллельного типа, то имеются выходы генерации G и распространения переноса H . P n и Р n+4 — входной и выходной переносы.
Для увеличения разрядности обрабатываемых слов МС АЛУ можно соединять последовательно, как и в параллельных сумматорах с последовательным переносом. При этом, конечно, увеличивается время выполнения операций.
Уменьшить это время и, следовательно, увеличить быстродействие АЛУ можно применением схемы ускоренного переноса 564ИП4, рисунок 26, б). Используя четыре МС АЛУ и одну МС ускоренного переноса можно получить 16-разрядное полностью параллельное АЛУ, время суммирования которого равно времени суммирования одной микросхемы.
4.2 Кодирующие и декодирующие устройства
4.2.1 Шифраторы
Шифратор (кодер) — это функциональный узел, предназначенный для преобразования поступающих на его входы управляющих сигналов (команд) в n-разрядный двоичный код. В частности, такими сигналами или командами могут быть десятичные числа, например, номер команды, который с помощью шифратора преобразуется в двоичный код.
В качестве примера разработаем схему 3-разрядного шифратора. Вначале следует построить таблицу кодов (таблицу истинности), в которой код номера сигнала представим, например, двоичным кодом (Рисунок 27,а). Схема, реализованная на элементах ИЛИ, приведена на рисунке 27,б.

Рисунок 27 Таблица кодов 3-разрядного шифратора а), его функциональная схема б) и УГО в).
В общем случае, при использовании двоичного кода, можно закодировать 2 nвходных сигналов. В рассмотренной выше схеме выходной код «000» будет присутствовать на выходе при подаче сигнала на вход X0 и в случае, если входной сигнал вообще не подаётся ни на один из входов. Для однозначной идентификации сигнала X0 в интегральных схемах формируется ещё один выходной сигнал — признак подачи входного сигнала, который используется и для других целей.
На рисунке 28 приведено УГО схемы 3-х разрядного приоритетного шифратора на 8 входов.

Рисунок 28 3-разрядный приоритетный шифратор К555ИВ1 а) и соединение двух МС б)
При подаче сигнала на любой из входов, устанавливается G=1, P=0, а на цифровых выходах — двоичный код номера входа, на который подан входной сигнал. Если сигнал подан одновременно на два или несколько входов, то на выходе установится код входа с большим номером. Отсюда название шифратора «приоритетный».
Если сигнал (лог.«0») подан на один из входов 0…7, то на выходах DD3 появятся младшие разряды прямого кода, на выходе G DD1 — лог. «0», определяющий разряд с весовым коэффициентом 8 выходного кода, на выходе P — лог. «1».
Если лог.«0» подан на один из входов 8…15, то сигнал лог. «1» с выхода P DD2 запретит работу DD1. При этом младшие разряды на выходах DD3 определяются уже микросхемой DD2, а на выходе 8 выходного кода будет лог. «1».
Таким образом, с выходов 1, 2, 4, 8 можно снять прямой код, соответствующий номеру входа, на который подан входной сигнал.
4.2.2 Дешифраторы (декодеры)
Дешифратор — функциональный узел, вырабатывающий сигнал «лог. 1» (дешифратор высокого уровня) или сигнал «лог. 0» (дешифратор низкого уровня) только на одном из своих 2 nвыходах в зависимости от кода двоичного числа на n входах.

Рисунок 29 Дешифратор: а) – таблица истинности; б) – функциональная схема
Дешифраторы широко используются в устройствах управления, где они формируют управляющий сигнал в соответствии с входным кодом, который воздействует на какое-либо исполнительное устройство.
Интегральные микросхемы дешифраторов изготавливаются с дополнительными входами, например, с входом разрешения (стробирования). Стробирование позволяет исключить появление на входах дешифратора ложных сигналов, запрещая его работу в интервале времени переходного процесса при изменении цифрового кода на входе.
Микросхема ИД3 (рисунок 30) имеет четыре адресных входа с весовыми коэффициентами двоичного кода 1, 2, 4, 8, два инверсных входа стробирования S, объединённых по И, и 16 инверсных выходов 0–15. Если на обоих входах стробирования «лог. 0», то на том из выходов, номер которого соответствует десятичному эквиваленту входного кода, будет «лог. 0». Если хотя бы на одном из входов стробирования S «лог. 1», то независимо от состояния входов на всех выходах микросхемы формируется «лог. 1».

Наличие двух входов стробирования существенно расширяет возможности использования микросхем. Из двух микросхем ИД3, дополненных одним инвертором, можно собрать дешифратор на 32 выхода (рисунок 31), а из 17 микросхем — дешифратор на 256 выходов (рисунок 32).

Рисунок 32 Дешифратор на 256 выходов
4.3 Коммутаторы цифровых сигналов
4.3.1 Мультиплексоры
Мультиплексор — функциональный узел, который имеет n адресных входов, N=2 nинформационных входов, один выход и осуществляет управляемую коммутацию информации, поступающей по N входным линиям, на одну выходную линию. Коммутация определённой входной линии происходит в соответствии с двоичным адресным кодом a n -1,… a 2, a 1, a 0.
Если адресный код имеет n разрядов, то можно осуществить N=2 nкомбинаций адресных сигналов, каждая из которых обеспечит подключение одной из N входных линий к выходной линии. Такой мультиплексор называют «из N в одну». При наличии избыточных комбинаций адресных сигналов можно спроектировать мультиплексор с любым числом входных линий N≤2 n.
Читать дальшеИнтервал:
Закладка: