Лекции по схемотехнике
- Название:Лекции по схемотехнике
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Лекции по схемотехнике краткое содержание
Лекции по схемотехнике - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
5.3.6 Универсальные счётчики в интегральном исполнении (Примеры)
УГО которых приведены на рисунке 64 а, б, в представляют собой счётчики с последовательно-параллельным переносом, структурные схемы которых подобны схеме, приведённой на рисунке 63.

Рисунок 64 Микросхемы счётчиков К155ИЕ2, К155ИЕ4 и К155ИЕ5
Структурные схемы счётчиков содержат по 4-е JK-триггера в счётном режиме. Первый триггер имеет отдельный вход C1 и прямой выход — 1, три оставшиеся триггера соединены между собой так, что образуют параллельные счётчики с коэффициентами счёта равными 5 (К15ИЕ2), 6 (К155ИЕ4) и 8 (К1ИЕ5).
При соединении выхода первого триггера со входом C2 цепочки из 3-х триггеров образуются счётчики с коэффициентами счёта 10, 12 и 16 соответственно.
Микросхемы имеют по два входа R, объединённые по «И». Микросхема К155ИЕ2 имеет кроме того входы установки в состояние 9, при котором первый и последний разряды устанавливаются в «1», а остальные в «0», то есть 1001 2=9.
Наличие входов установки, например, в «0», позволяет строить делители частоты (счётчики) с различными коэффициентами деления (счёта) в пределах 2–16 без использования дополнительных логических элементов.
На рисунке 61,г показано преобразование счётчика, имеющего K СЧ =12, в десятичный.
До прихода 10-го импульса схема работает как делитель частоты на 12. Десятый импульс переводит триггеры МС в состояние, при котором на выходах 4 и 6 МС формируются лог. «1».
Эти уровни, поступая на входы R, объединённые по «И», переводят МС в состояние «0»; в результате чего K СЧ ( K ДЕЛ ) становится равным 10.
Прямой счёт осуществляется при подаче отрицательных импульсов на вход +1, при этом на входах –1 и C должна быть лог. «1», а на входе R — лог. «0». Переключение триггеров происходит по спадам входных импульсов.

Рисунок 65 Реверсивные счётчики К155ИЕ6 а) и К15ИЕ7 б).
Уровни на выходах 1–2–4–8 соответствуют состоянию счёта в данный момент времени.
Отрицательный импульс на выходе ≥9 (≥15) формируется одновременно с 10 (или 16) импульсом на входе +1. Этот импульс может подаваться на вход +1 следующей МС многоразрядного счётчика. При обратном счёте входные импульсы подаются на вход –1, выходные импульсы снимаются с выхода ≤0.
Микросхема содержит 6-разрядный двоичный счётчик, элементы совпадения и элемент собирания. Элементы совпадения блокируют прохождение импульсов, не совпадающих с запрограммированным кодом, а элемент собирания позволяет передавать на выход только выделенные импульсы.

Рисунок 66 Счётчик – делитель частоты К155ИЕ8
В результате средняя частота выходных импульсов может изменяться от 1/64 до 63/64 частоты входных импульсов.
Число импульсов на выходе за период счёта (до 64) подсчитывается по формуле: N=32·x32+16·x16+8·x8+4·x4+2·x2+1·x1, где x1–x32 принимают значения соответственно 0 или 1 в зависимости от того подан или нет уровень лог. «1» на соответствующий вход.
6 Запоминающие устройства
6.1 Иерархия запоминающих устройств ЭВМ
Запоминающие устройства (ЗУ) служат для хранения информации и обмена ею с другими устройствами. Микросхемы и системы памяти постоянно совершенствуются как в области схемотехнологии, так и в области развития новых архитектур.
Важнейшие параметры ЗУ находятся в противоречии. Так, например, большая информационная ёмкость не сочетается с высоким быстродействием, а быстродействие в свою очередь не сочетается с низкой стоимостью. Поэтому в ЗУ используется многоступенчатая иерархическая структура.
В наиболее развитой иерархии памяти ЭВМ можно выделить следующие уровни.
Регистровые ЗУ — находятся внутри процессора. Благодаря им уменьшается число обращений к другим уровням памяти, находящимся вне процессора и требующим большего времени для операции обмена.
Кэш-память — быстродействующая память, которая может находиться внутри или вне процессора. Она предназначена для хранения копий информации, находящейся в более медленной основной памяти.
Оперативная память (RAM — Read Access Memory) или оперативное запоминающее устройство (ОЗУ) — часть основной памяти ЭВМ, предназначенной для хранения быстро изменяемой информации. В ОЗУ хранятся программы пользователей промежуточные результаты вычислений.
Постоянная память (ROM — Read Only Memory — память только для чтения) или постоянное запоминающее устройство (ПЗУ) — это вторая часть основной памяти ЭВМ, предназначенной для хранения редко меняемой информации, например, кодов команд, тестовых программ.
Специализированные виды памяти , например, видеопамять, предназначенная для хранения информации, отображаемой на экране дисплея и др.
Внешняя память — магнитные и оптические диски, FLASH-память, предназначенные для хранения больших объёмов информации.
6.2 Структурные схемы ЗУ
ЗУ адресного типа состоят из трёх основных блоков:
- Массив элементов памяти,
- Блок адресной выборки,
- Блок управления.
Многочисленные варианты ЗУ имеют много общего с точки зрения структурных схем. Общность структур особенно проявляется для статических ОЗУ и памяти ROM; для них характерны структуры 2D, 3D и 2DM.
В ЗУ, с информационной ёмкостью M, запоминающие элементы организованы в матрицу размерностью k · m :
M = k·m ,
где k — количество хранимых слов,
m — их разрядность.
Дешифратор адресного кода имеет k выходов и активизирует одну из выходных линий, разрешая одновременный доступ ко всем элементам выбранной строки, хранящей слово.
Элементы каждого из столбцов соединены вертикальными разрядными линиями и хранят одноимённые биты всех слов.
Таким образом, при наличии разрешающего сигнала CS, выбранная дешифратором ячейка памяти подключается к разрядным шинам, по которым производится запись или считывание адресованного слова.
Структура типа 2D применяется лишь в ЗУ с малой информационной ёмкостью, т.к. при росте ёмкости усложняется дешифратор адреса. Например, при коде разрядностью n=8 дешифратор должен иметь 2 n=256 выходов.
Читать дальшеИнтервал:
Закладка: