Стивен Вайнберг - Всё ещё неизвестная Вселенная. Мысли о физике, искусстве и кризисе науке

Тут можно читать онлайн Стивен Вайнберг - Всё ещё неизвестная Вселенная. Мысли о физике, искусстве и кризисе науке - бесплатно ознакомительный отрывок. Жанр: sci-phys, издательство Альпина нон-фикшн, год 2020. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Всё ещё неизвестная Вселенная. Мысли о физике, искусстве и кризисе науке
  • Автор:
  • Жанр:
  • Издательство:
    Альпина нон-фикшн
  • Год:
    2020
  • Город:
    Москва
  • ISBN:
    9785001392125
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Стивен Вайнберг - Всё ещё неизвестная Вселенная. Мысли о физике, искусстве и кризисе науке краткое содержание

Всё ещё неизвестная Вселенная. Мысли о физике, искусстве и кризисе науке - описание и краткое содержание, автор Стивен Вайнберг, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Десятки лет один из самых известных ученых нашего времени заставляет общество задуматься о фундаментальных законах природы и о неразрывной связи науки и социума. В своей новой книге «Всё ещё неизвестная Вселенная» Стивен Вайнберг освещает широкий круг вопросов: от космологических проблем он переходит к социальным, от астрономии, квантовой механики и теории науки — к ограниченности современного знания, искусству научных открытий и пользе ошибок.
Лауреат Нобелевской премии Стивен Вайнберг делится своими взглядами на захватывающие фундаментальные вопросы физики и устройства Вселенной. При этом ему удается не ограничиваться узкими дисциплинарными рамками и не прятаться от политических тем, среди которых нецелесообразность пилотируемых космических полетов, проблемы социального неравенства и важность поддержки большой науки.
Эта книга издана в рамках программы «Книжные проекты Дмитрия Зимина» и продолжает серию «Библиотека «Династия». Дмитрий Борисович Зимин — основатель компании «Вымпелком» (Beeline), фонда некоммерческих программ «Династия» и фонда «Московское время».
Программа «Книжные проекты Дмитрия Зимина» объединяет три проекта, хорошо знакомые читательской аудитории: издание научно-популярных переводных книг «Библиотека «Династия», издательское направление фонда «Московское время» и премию в области русскоязычной научно-популярной литературы «Просветитель».
Подробную информацию о «Книжных проектах Дмитрия Зимина» вы найдете на сайте
.
Переводчик Сергей Чернин
Научный редактор Дмитрий Баюк
Редактор Антон Никольский
Руководитель проекта И. Серёгина
Корректоры Е. Чудинова, С. Чупахина
Компьютерная верстка А. Фоминов
Дизайн обложки А. Бондаренко
© Steven Weinberg, 2018
© Издание на русском языке, перевод, оформление. ООО «Альпина нон-фикшн», 2020
© Электронное издание. ООО «Альпина Диджитал», 2020 Вайнберг С. Всё ещё неизвестная Вселенная. Мысли о физике, искусстве и кризисе науке / Стивен Вайнберг; Пер. с англ. — М.: Альпина нон-фикшн, 2020.
ISBN 978-5-0013-9212-5

Всё ещё неизвестная Вселенная. Мысли о физике, искусстве и кризисе науке - читать онлайн бесплатно ознакомительный отрывок

Всё ещё неизвестная Вселенная. Мысли о физике, искусстве и кризисе науке - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Стивен Вайнберг
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Чуть больше времени потребовалось, чтобы понять природу еще одной силы, которая удерживает вместе протоны и нейтроны в атомном ядре. Речь идет о сильном ядерном взаимодействии. 50 лет назад мы располагали огромным массивом данных об этой силе и могли вообразить любое количество квантово-полевых теорий, потенциально пригодных для описания этого типа взаимодействия, однако у нас не было способа воспользоваться данными, чтобы выбрать правильную теорию. Поскольку сила взаимодействия велика, во всех этих теориях каждая возможная последовательность промежуточных шагов вносила существенный вклад во все наши расчеты. Учесть все эти вклады даже приблизительно, как мы делали в рамках теории электрослабого взаимодействия, было невозможно.

Ситуация усложнялась тем, что со временем обнаруживалось все больше и больше типов частиц, участвующих в сильном взаимодействии. Казалось невероятным, что все эти сотни типов частиц могут быть квантами различных полей, сгустками энергии поля, по одному полю на каждый тип частиц. Всем этим частицам можно было бы придать какой-то смысл, если предположить, что они состоят из по-настоящему элементарных частиц — кварков, относящихся к нескольким типам. Было сделано предположение, что каждый протон и нейтрон в атомном ядре состоит из трех кварков. Но если это так, почему экспериментаторы не смогли обнаружить эти кварки? Я помню охвативший всех пессимизм относительно того, можно ли вообще сильное взаимодействие описать хоть какой-то квантово-полевой теорией.

Позже, в начале 1970-х гг., нужная теория была найдена. Как и успешная теория электрослабого взаимодействия, новая теория имела нечто общее с квантовой электродинамикой, только теперь место электрического заряда заняла новая величина, условно названная цветом. В рамках этой теории, получившей название квантовой хромодинамики, сильное взаимодействие между кварками осуществляется за счет обмена протоноподобными частицами восьми типов, названных глюонами. Квантовая хромодинамика объясняет экспериментальные результаты, согласно которым сильное взаимодействие между кварками ослабевает, когда кварки рассматриваются на конечных расстояниях, как и в случае, когда они сталкиваются с электронами при высоких энергиях. Это ослабление силы взаимодействия позволяет проводить различные приближенные расчеты, как в теории электрослабого взаимодействия, и результаты расчета согласуются с экспериментами, что подтверждает правильность теории.

Глюоны никогда не наблюдались в эксперименте. Сначала предполагалось, что причиной этому является слишком высокая масса частиц, поэтому их не удается получить в существующих ускорителях. Глюоны приобретают огромную массу в результате нарушения симметрии, аналогично тому как W +, W —и Z 0-бозоны приобретают массу в теории электрослабого взаимодействия. И даже в этом случае все еще остается загадкой, почему кварки ни разу не наблюдались в экспериментах. Трудно было поверить, что кварки слишком тяжелые; навряд ли они могут быть намного тяжелее, чем содержащие их протоны и нейтроны.

Позже несколько ученых-теоретиков предположили, что, поскольку сильное взаимодействие ослабевает на малых расстояниях, возможно, оно становится очень интенсивным на больших расстояниях, настолько интенсивным, что оказывается невозможным разъединить цветные частицы вроде кварков и глюонов. Никто не доказал математически справедливость этого предположения, но многие физики считают его верным.

Итак, теперь мы имеем Стандартную модель элементарных частиц. Ее компоненты — это квантовые поля и различные элементарные частицы, представляющие собой кванты этих полей: фотоны, W +, W —и Z 0-частицы, восемь глюонов, шесть типов кварков, электрон и два типа подобных ему частиц, а также три типа почти безмассовых частиц, называемых нейтрино. Уравнения этой теории не случайны; они тесно связаны с различными принципами симметрии и с условиями исключения бесконечностей.

При этом Стандартная модель, очевидно, не является окончательной теорией. В ее уравнения входит множество параметров, например массы кварков, которые нужно получать экспериментально, и мы не понимаем, почему они имеют именно такие значения. Более того, Стандартная модель не описывает самую привычную и давно известную силу — силу гравитации. Обычно мы описываем гравитацию с помощью теории поля — общей теории относительности, однако это не квантово-полевая теория с исключенными бесконечностями по типу Стандартной модели.

Начиная с 1980-х гг. огромное количество сложных математических работ было посвящено развитию квантовой теории, фундаментальными компонентами которой были бы не частицы или поля, а тонкие струны. Различные моды колебаний этих струн мы видим как различные типы элементарных частиц. Одна из таких мод соответствует гравитону, кванту гравитационного поля. Если теория струн окажется верна, это не означает, что теории поля, такие как Стандартная модель или ОТО, станут неверными; просто их значение понизится до эффективных теорий, приближений, справедливых на масштабах расстояний и энергий, доступных для наблюдения.

Теория струн довольно привлекательна, поскольку включает в себя гравитацию, не содержит бесконечностей, а ее структура тесно связана с условиями математической согласованности, то есть теория струн всего одна. К сожалению, несмотря на то что мы до сих пор не знаем точный вид уравнений, лежащих в основе теории струн, есть причины полагать, что, какими бы эти уравнения не были, они имеют огромное количество решений. Я был поклонником теории струн, однако меня огорчает то, что пока никому не удалось найти решение, соответствующее наблюдаемому нами миру.

Проблемы физики элементарных частиц и космологии все чаще пересекаются. Существует классическая загадка космологии: почему Вселенная настолько однородна? За 13,8 млрд лет с того момента, как Вселенная стала прозрачной для электромагнитного излучения, никакому физическому взаимодействию не хватило бы времени, чтобы связать те части Вселенной, которые мы видим в различных по отношению к себе направлениях, и чтобы наблюдаемое распределение плотности и температуры во Вселенной вследствие этого всюду стало бы однородным. В начале 1980-х гг. выяснилось, что различные квантово-полевые теории предсказывают предшествующий моменту формирования атомных ядер период инфляции, когда Вселенная расширялась экспоненциально. Высокооднородные малые области во время инфляции должны были расшириться до размеров, превышающих современные размеры наблюдаемой Вселенной, оставаясь при этом приблизительно однородными. Конечно, это всего лишь гипотеза, однако она оказалась чрезвычайно успешной. Расчеты показывают, что квантовые флуктуации в процессе инфляции должны были запустить через несколько тысяч лет что-то вроде хаотических волн, отзвуки которых мы сегодня наблюдаем в виде фонового реликтового излучения.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Стивен Вайнберг читать все книги автора по порядку

Стивен Вайнберг - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Всё ещё неизвестная Вселенная. Мысли о физике, искусстве и кризисе науке отзывы


Отзывы читателей о книге Всё ещё неизвестная Вселенная. Мысли о физике, искусстве и кризисе науке, автор: Стивен Вайнберг. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x