Аттилио Ригамонти - Физика повседневности. От мыльных пузырей до квантовых технологий

Тут можно читать онлайн Аттилио Ригамонти - Физика повседневности. От мыльных пузырей до квантовых технологий - бесплатно ознакомительный отрывок. Жанр: sci-phys, год 2020. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Физика повседневности. От мыльных пузырей до квантовых технологий
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    2020
  • Город:
    Москва
  • ISBN:
    978-5-0013-9340-5
  • Рейтинг:
    3.5/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Аттилио Ригамонти - Физика повседневности. От мыльных пузырей до квантовых технологий краткое содержание

Физика повседневности. От мыльных пузырей до квантовых технологий - описание и краткое содержание, автор Аттилио Ригамонти, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Почему при течении воды в реках возникают меандры? Как заставить бокал запеть? Можно ли построить переговорную трубку между Парижем и Марселем? Какие законы определяют форму капель и пузырьков? Что происходит при приготовлении жаркого? Можно ли попробовать спагетти альденте на вершине Эвереста? А выпить там хороший кофе? На все эти вопросы, как и на многие другие, читатель найдет ответы в этой книге. Каждая страница книги приглашает удивляться, хотя в ней обсуждаются физические явления, лежащие в основе нашей повседневной жизни. В ней не забыты и последние достижения физики: авторы посвящают читателя в тайны квантовой механики и сверхпроводимости, рассказывают о физических основах магнитно-резонансной томографии и о квантовых технологиях. От главы к главе читатель знакомится с неисчислимыми гранями физического мира. Отмеченные Нобелевскими премиями фундаментальные результаты следуют за описаниями, казалось бы, незначительных явлений природы, на которых тем не менее и держится все величественное здание физики.

Физика повседневности. От мыльных пузырей до квантовых технологий - читать онлайн бесплатно ознакомительный отрывок

Физика повседневности. От мыльных пузырей до квантовых технологий - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Аттилио Ригамонти
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Звуковые волноводы, созданные человеком

Распространение звука в газах или жидкостях представляет собой возмущение, периодически изменяющее в пространстве и времени плотность частиц, эту среду составляющих. Любой выделенный объем жидкости локально подвергается периодической череде сжатий и расширений.

Скорость звука в жидкостях и твердых телах, вообще говоря, выше, чем в газах. Это и не удивительно, ведь в вакууме звук не распространяется вообще, а разреженный газ имеет плотность промежуточную между вакуумом и конденсированным веществом. Однако если скорость звука в двух средах сильно отличается, то передача звука из одной в другую может быть затруднена. Это явление используется в стетоскопе – инструменте, который доносит в ухо врача звуки из грудной клетки пациента. Первоначально он представлял собой простую деревянную трубку.

Другой пример волновода, основанного на явлении полного отражения, которое возникает при переходе звука из воздуха в твердое тело, – это старинная система акустических труб, соединяющая различные уровни на кораблях. Сделанная обычно из меди или латуни, она передает приказ с капитанского мостика в машинное отделение. В таком волноводе волна практически одномерна – это означает, что интенсивность звуковой волны остается постоянной по всей длине трубы, даже на удалении от источника. Затухание звука в воздухе настолько низкое, что, если бы можно было построить прямую трубку длиной 750 км и избежать поглощения звука стенками, она послужила бы телефоном между Парижем и Марселем. К сожалению, скорость звука в воздухе составляет всего 340 м/с, так что слова из Парижа в Марсель добирались бы более получаса…

Изучение распространения звука в океанах серьезно интересовало британских и американских ученых во время Второй мировой войны. Тогда речь шла об обнаружении немецких подводных лодок раньше, чем они подплывут достаточно близко, чтобы атаковать американские или английские суда. Акустическое обнаружение подводных лодок с помощью сонаров сыграло важную роль в битве за Атлантику: в 1943 году, после тяжелых потерь, союзники сумели уничтожить значительное количество немецких подлодок, установив тем самым свое превосходство на море.

6 Акустический луч красный излучаемый на глубине z m проходит между - фото 22

6. Акустический луч (красный), излучаемый на глубине z m , проходит между двумя плоскостями, от которых он полностью отражается. Зависимость скорости звука от глубины c ( z ) в океане представлена зеленой кривой. Значения z 1 и z 2 (считаем, что глубина равна 0 на поверхности) зависят от угла падения луча на глубине z m и определяются законом Снеллиуса: c ( z 1 ) = c ( z 2 ) = c m /sin α ( z m )

Простая модель

Интересно рассмотреть случай, когда скорость звука c – простая функция глубины z. Например, функция, имеющая минимум в z m : c ( z ) = c ( z m ) + k ( z – z m ) 2, где k – константа. В этом случае кривая, иллюстрирующая изменение скорости звука в зависимости от глубины (зеленая на илл. 5 и 6), является параболой. На самом деле это приближение почти всегда справедливо для глубин z , близких к z m . Звуковой луч, немного отклоняющийся от горизонтали, следует по синусоиде, период которой не зависит от угла падения, так что все звуковые лучи в одной вертикальной плоскости сходятся в точках оси z = z m (илл. 7). Эти точки аналогичны фокусам оптических приборов, таких как линзы, в которых сходятся падающие световые лучи, поэтому наблюдается явление фокусировки звуковых волн. Параболическая форма кривой хорошо описывает изменение скорости звука в зависимости от частоты в глубинах океана. Однако, поскольку кривая c ( z ) на практике не является параболой, то фокусировка звука не идеальна.

Заключение

Когда звук излучается на соответствующей глубине в море, значительная часть звуковой энергии оказывается заперта в «акустических каналах». Достаточное ли это объяснение для прохождения звука от Австралии до Бермудских островов? Попробуем подсчитать. Хотя рассмотренный нами механизм описывает именно распространение звука в океане, остаются возможными еще два направления. Звуковая волна, излучаемая в середине океана, проходит в течение времени t расстояние R порядка с зв. t, где с зв. – средняя скорость звука в воде, скажем, 1500 м/с. Даже если предполагается, что потери равны нулю, энергия звуковой волны должна распределяться по всей, примерно цилиндрической, поверхности зоны 2π Rh , где разница в глубине h между верхней и нижней границами канала может достигать глубины океана. Таким образом, интенсивность звука уменьшается как 1/ R по мере удаления от источника. Это происходит не так резко, как затухание, пропорциональное 1/ R 2звука в воздухе (илл. 3), но и оно едва ли оставляет надежду на то, что звук, раздавшийся в Австралии, будет услышан на Бермудах. Однако если приемник звука находился в точке фокуса, где сходятся звуковые лучи (илл. 7), а величина h невелика, то в принципе отголосок взрыва мог быть услышан. Кроме того, можно допустить, что колебания солености и температуры в толще океана на пути звуковых лучей создают и вертикальные отражающие стенки, препятствующие рассеянию энергии звуковой волны. И все же удивительно, что звук достигает Бермудских островов в обход мыса Доброй Надежды, учитывая дополнительное поглощение энергии, например, пузырьками воздуха или планктоном.

7 Явление фокусировки звуковых лучей 8 Пример миража в Ливийской пустыне - фото 23

7. Явление фокусировки звуковых лучей

8 Пример миража в Ливийской пустыне По мере приближения к раскаленному песку - фото 24

8. Пример миража в Ливийской пустыне. По мере приближения к раскаленному песку солнечные лучи встречают все более горячий воздух (и, следовательно, среду с уменьшающимся показателем преломления): таким образом, они, как и звуковые лучи на илл. 7, все сильнее отклоняются вплоть до отражения. Наблюдателю кажется, что в продолжении этих отраженных лучей он видит воду

Распространение звука в естественных подводных каналах – не единственный случай волновода, созданного природой. Еще несколько примеров связаны со спецификой распространения электромагнитных волн. Наиболее эффектны миражи, которые возникают из-за непрямолинейного распространения света в очень неравномерно нагретой атмосфере (илл. 8). Кроме того, можно вспомнить короткие радиоволны, которые распространяются на большие расстояния благодаря отражению в ионосфере – верхней области атмосферы на высоте от 60 до 800 км. При определенных условиях радиоприемник может принимать радиопередачи из других стран.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Аттилио Ригамонти читать все книги автора по порядку

Аттилио Ригамонти - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Физика повседневности. От мыльных пузырей до квантовых технологий отзывы


Отзывы читателей о книге Физика повседневности. От мыльных пузырей до квантовых технологий, автор: Аттилио Ригамонти. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x