А. Мигдал - ПОИСКИ ИСТИНЫ
- Название:ПОИСКИ ИСТИНЫ
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
А. Мигдал - ПОИСКИ ИСТИНЫ краткое содержание
ПОИСКИ ИСТИНЫ - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
То, о чем здесь будет рассказано, - исключение из правила. Это извлечение из размышлений и споров людей, занимающихся не «наукой» о науке, а самой наукой. Это не науковедческое исследование, а попытка поделиться опытом, сформулировать соображения, накопленные в процессе работы.
ПОБУЖДЕНИЯ К НАУЧНОМУ ТВОРЧЕСТВУ
Тебе чужда любви и страсти
позолота, Тебя влечет научная работа. Пройдет любовь, обманет страсть, Но лишена обмана Волшебная структура таракана.
Н. Олейников
Что толкает молодого человека к занятию наукой? Какие черты характера нужны для этого? Как воспитать в себе нужные качества?
Не будем касаться такого стимула, как понимание общественной полезности своей работы, - этот фактор в равной мере присутствует во всех областях человеческой деятельности. Обсудим лишь психологические побуждения, непосредственно связанные с научным творчеством. Они складываются из нескольких элементов.

Любопытство, самовыражение, самоутверждение
Наименее близко духу науки желание самоутверждения, желание доказать себе или другим, что ты можешь довести задачу до конца. Разумеется, мы оставляем в стороне жажду сделать карьеру или извлечь выгоду. Другой мотив - стремление к самовыражению, к наиболее полному проявлению своей индивидуальности. Но самое благородное и отвечающее духу науки побуждение - любопытство, желание узнать, как устроена природа. В этом случае чужой успех радует не меньше, чем свой собственный. Именно такое отношение к науке было у нашего замечательного физика-теоретика Исаака Яковлевича Померанчука - даже перед смертью, приходя в сознание, он расспрашивал о последних работах по теории элементарных частиц и радовался каждой новой идее.
Такой чистый случай встречается крайне редко, и это необязательное условие. Обычно смешиваются все три мотива.

Иногда стремление к самовыражению проявляется настолько сильно, что занятия одной только наукой оказывается недостаточно. Макс Планк был хорошим пианистом. Эйнштейн играл на скрипке. Ричард Фейнман играет на барабане бонго. Один наш известный физик пишет стихи: «…Желаешь объяснения - познай атомо-склад!» (Физикам эта строчка подскажет его имя.) В Москве с успехом проходила художественная выставка «Ученые рисуют»…
Есть люди, для которых жажда самоутверждения - главный стимул творческой активности. Но если эта жажда не обуздана безупречной добросовестностью, она почти неизбежно приводит к погоне за эффектными результатами и к невольной подтасовке фактов. Сколько талантливых людей погибло для науки из-за этого недостатка!
Среди людей, далеких от науки, широко распространено мнение, что ученый руководствуется в своей работе стремлением сделать открытие. Между тем задача научного работника - глубокое и всестороннее исследование интересующей его области науки. Открытие возникает только как побочный продукт исследования. Это не означает, что ученые так идеальны, что не хотят сделать открытие, - желание, разумеется, присутствует, но на втором плане; оно не должно даже и в малой степени влиять на добросовестность исследования.
Под словом «открытие» я здесь подразумеваю существенный скачок в понимании природы. Небольшие, обычно невидимые миру открытия делаются непрерывно, и именно они составляют радость повседневной работы. Любопытство, умение радоваться каждому малому шагу, каждому небольшому открытию - необходимое условие для человека, выбравшего научную профессию.
Способность удивляться и научные парадоксы
Любопытство исследователя самым непосредственным образом связано со способностью удивляться. Это качество необходимо для творческой активности в любой области, без него нет ни поэта, ни художника, ни ученого. Но в отличие от искусства, где главное - живая и непосредственная реакция на увиденное или услышанное, в науке нужно уметь удивляться тому, что возникает в результате размышления, осмысливания накопленных знаний. Когда ученый удивляется - значит обнаружилось противоречие каких-либо фактов с привычными представлениями, то есть возник научный парадокс. Словарь Даля определяет слово «парадокс» так: «мнение странное, на первый взгляд дикое, озадачливое, противное общему». Определение годится и для научного парадокса, нужно только добавить, что это мнение должно быть убедительно обосновано. Много раз парадоксы приводили к научным революциям.
Когда первые мореплаватели, сверяя курс по звездам, обнаружили, что картина неба меняется; когда люди задумались над тем, почему, подъезжая к городу, они сначала видят верхушки башен, возник научный парадокс, а из него открытие, что Земля круглая.
Со времен Галилея известно, что все тела падают с одинаковой скоростью, если отвлечься от сопротивления воздуха. Это означает, что вес тела, то есть сила, с которой тело притягивается к Земле, строго пропорционален его массе. Но массе пропорциональны и силы инерции. И из-за этой одинаковой зависимости сил от массы человек в свободно падающей камере находится в состоянии невесомости: сила тяжести строго компенсируется силами инерции. Мы так свыклись с этим, что не замечаем здесь никакой странности. Почему вес тел независимо от их состава, независимо от их состояния пропорционален массе, мере инерции? Не следует ли из этого парадокса, что между инерцией и гравитацией (силами тяготения) есть глубокая внутренняя связь? С этой мысли началось построение одной из самых удивительных физических теорий - теории тяготения Эйнштейна.
Согласно теории тяготения, вблизи тяжелых масс геометрия пространства изменяется - она отличается от нашей привычной евклидовой. Из-за этого изменения геометрии свет распространяется не по прямой: искривление лучей света было обнаружено при фотографировании света далеких звезд, проходящего мимо Солнца!
Почему звезды дают так мало света? Предположим, что звезды заполняют Вселенную более или менее равномерно. Тогда число звезд, лежащих внутри сферы радиуса R, окружающей Землю, растет пропорционально R3. Интенсивность же света от каждой отдельной звезды, как известно, падает пропорционально 1/R2. Следовательно, полная интенсивность света от звезд, лежащих внутри сферы, пропорциональна R, и если бы Вселенная была бесконечна, яркость неба лимитировалась бы только ничтожным поглощением света в межзвездном пространстве. Небо должно было бы сиять «ярче тысячи солнц». Этот парадокс был известен очень давно, но оставался неразгаданным. Его объяснила космология Эйнштейна - неслыханное по смелости применение теории тяготения к миру в целом.
Читать дальшеИнтервал:
Закладка: