А. Мигдал - ПОИСКИ ИСТИНЫ
- Название:ПОИСКИ ИСТИНЫ
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
А. Мигдал - ПОИСКИ ИСТИНЫ краткое содержание
ПОИСКИ ИСТИНЫ - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
208
ние и так далее. И все это множество явлений описывается единой теорией, основы которой были заложены Л. Д. Ландау в 1937 году. С тех пор теория фазовых переходов обогатилась многими новыми идеями и превратилась в одну из интереснейших областей теоретической физики с большим количеством практических применений.
Что же отличает одну фазу от другой и что объединяет все эти разнородные явления? Оказывается, всегда существует некая величина, которая называется «параметром порядка» и которая равна нулю в одной фазе и отлична от нуля в другой. В случае перехода из твердого состояния в жидкое в качестве параметра можно взять отношение числа атомов, расположенных в правильном порядке (в кристаллической решетке), к полному числу атомов. Ниже точки плавления это отношение равно единице, выше - нулю. При этом переходе параметр порядка изменяется скачком.
В таких случаях переход называется «переходом 1-го рода».
Рассмотрим переход из ферромагнитного состояния в парамагнитное. Ферромагнитное состояние - такое, в котором находится вещество в магните. При этом магнитные моменты отдельных атомов имеют преимущественное направление - большинство магнитных моментов расположено вдоль оси магнита. По мере нагревания магнита тепловое движение все больше и больше разбрасывает магнитные моменты по разным направлениям, и при некоторой температуре средний магнитный момент атомов вдоль оси магнита обращается в нуль. Значит, вещество перешло в парамагнитное состояние, в котором магнитные моменты атомов ориентированы беспорядочно. При переходе из ферромагнитного состояния в парамагнитное роль параметра порядка играет среднее значение проекции магнитного момента на ось намагничивания. В точке перехода эта величина обращается в нуль и остается нулем после перехода в парамагнитное состояние.
Таким образом, параметр порядка не испытывает скачка в точке фазового перехода. Такой переход называется «переходом 2-го рода».
Как мы увидим, перестройка вакуума во внешних полях тоже представляет собой фазовый переход 2-го рода. Роль параметра порядка играет величина конден-сатного поля, которое возникает после перестройки.
Фазовые переходы вакуума
Как изменяется вакуум в присутствии внешнего поля, то есть поля, создаваемого внесенными в вакуум частицами? Небольшая перестройка вакуума происходит даже в слабых полях. Нас будет интересовать перестройка вакуума, внезапно наступающая при достижении некоторого критического значения внешнего поля, перестройка, вызываемая возможностью самопроизвольного рождения частиц определенного типа.
Как мы уже знаем, в вакууме непрерывно рождаются и исчезают всевозможные частицы, он заполнен такими виртуальными частицами.
Зададим себе вопрос: что случится с виртуальными частицами, если в вакууме появится сильное поле? Не сделаются ли они реальными?
Допустим, что в некоторой области пространства создано сильное поле - электрическое, гравитационное или ядерное (поле, создаваемое нуклонами). Пусть поле имеет вид потенциальной ямы. Самый простой пример потенциальной ямы - это впадина на поверхности Земли. Когда частица попадает извне в потенциальную яму, ее кинетическая энергия увеличивается, как у камня, скатывающегося с горы.
В вакууме у верхнего края ямы непрерывно рождаются и исчезают всевозможные частицы. Для того чтобы виртуальная частица стала реальной, ей согласно формуле Эйнштейна необходимо передать энергию, равную тс2, где т - масса частицы, ас - скорость света. Энергия, передаваемая полем частице при ее падении на дно ямы, может пойти либо на увеличение кинетической энергии уже родившейся частицы, либо на то, чтобы превратить виртуальную частицу у верхнего края ямы в реальную частицу, находящуюся на дне.
Что произойдет, если глубина энергетической ямы превысит величину mс2, то есть энергию покоящейся частицы? Тогда при рождении частиц будет выигрываться энергия. Действительно, чтобы создать одну покоящуюся частицу, надо затратить энергию, равную mс2, а энергия, выигрываемая при сбрасывании частицы в яму, превышает mс2. Следовательно, в присутствии сильного внешнего поля возникает неустойчивость: в вакууме будут рождаться и накапливаться частицы до тех пор, пока они не создадут дополнительное поле, которое сделает дальнейшее рождение частиц энергетически невыгодным.
210
Критические условия достигаются тем легче, чем меньше масса рождающихся частиц.
Наименьшую массу среди заряженных частиц имеют электроны. Однако они, как и все другие частицы со спином 1/2, подчиняются «запрету Паули» и не могут накапливаться в большом количестве - в каждом состоянии может находиться только один электрон.
Гораздо более существенная перестройка вакуума должна происходить в таких полях, в которых возможно рождение частиц с целым спином. Тогда нет запрета Паули, и частицы могут накапливаться в состоянии наинизшей энергии в любом количестве. Предел накапливания определяется только отталкиванием частиц друг от друга. Наименьшую массу среди частиц такого типа имеют пи-мезоны, поэтому наиболее интересно исследование свойств пионного поля и выяснение условий, при которых возникает пионная неустойчивость вакуума (неустойчивость по отношению к образованию пионного поля).
Такая неустойчивость может возникнуть в достаточно сильном электрическом поле. Вблизи ядра с числом протонов Z пионная неустойчивость возникает, как показывает расчет, при значениях Z›1500.
Ядра с таким зарядом, если не принимать во внимание возможность перестройки вакуума, были бы неустойчивы из-за громадного кулоновского отталкивания протонов. Однако расчет энергии, выигрываемой от перестройки вакуума, показывает, что этот выигрыш может превысить потерю энергии из-за кулоновского отталкивания. В результате такие «сверхзаряженные» ядра могут оказаться устойчивыми, и не исключено, что они возникли в процессе эволюции Вселенной. В этом случае следует пытаться искать их в космических лучах.
Наиболее интересна пионная неустойчивость вакуума, которая проявляется в достаточно плотной нуклон-ной среде (в среде, состоящей из нейтронов и протонов). Поскольку пи-мезоны сильно взаимодействуют с нуклонами, такая среда создает ту потенциальную яму, в которой при достаточной плотности возникает неустойчивость вакуума. Как мы увидим, неустойчивость пионного поля в нуклонной среде приводит к большому количеству важных физических следствий и может быть проверена экспериментально. Обсудим это явление более подробно.
Пиониая конденсация
Эффективная потенциальная яма для пионов, создаваемая нуклонным веществом с плотностью п, имеет глубину
Читать дальшеИнтервал:
Закладка: