Иосиф Шкловский - Звезды: их рождение, жизнь и смерть
- Название:Звезды: их рождение, жизнь и смерть
- Автор:
- Жанр:
- Издательство:Наука, Главная редакция физико-математической литературы
- Год:неизвестен
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Иосиф Шкловский - Звезды: их рождение, жизнь и смерть краткое содержание
Книга посвящена центральной проблеме астрономии — физике звезд. Заключительный этап звездной эволюции представляет особенно большой интерес, так как он имеет прямое отношение к таким интереснейшим объектам современной астрономии, как пульсары, рентгеновские звезды и черные дыры. Проблемы, связанные с этими объектами, пока далеки от решения. Поэтому автор стремился осветить фактическое состояние вопроса, давая лишь общее представление о существующих: теориях и гипотезах. В книге рассматривается также проблема образования звезд.
Книга рассчитана на широкий круг лиц со средним образованием. Специальный интерес она представляет для студентов, лекторов, преподавателей, специалистов в области смежных наук.
Звезды: их рождение, жизнь и смерть - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
где t — время падения, причем мы положили R R
, a M
M
. Таким образом, если бы никакая сила не противодействовала гравитации, наружные слои звезды буквально рухнули бы, а звезда катастрофически бы сжалась за какую-нибудь долю часа!
Какая же сила, непрерывно действующая во всем объеме звезды, противодействует силе гравитации? Заметим, что в каждом элементарном объеме звезды направление этой силы должно быть противоположно, а величина равна силе притяжения. В противном случае происходили бы локальные, местные нарушения равновесия, приводившие за очень короткое время, которое мы только что оценили, к большим изменениям в структуре звезды.
Силой, противодействующей гравитации, является давление газа [ 16 ] Точнее, разница в давлении газа на разной глубине внутри звезды.
. Последнее непрерывно стремится расширить звезду, «рассеять» ее на возможно больший объем. Выше мы уже оценили, как быстро «рассеялась» бы звезда, если бы отдельные ее части не сдерживались силой гравитации. Итак, из того простого факта, что звезды — газовые шары в практически неизменном виде (т. е. не сжимаясь и не расширяясь) существуют по меньшей мере миллионы лет, следует, что каждый элемент вещества звезды находится в равновесии под действием противоположно направленных сил гравитации и газового давления. Такое равновесие называется «гидростатическим». Оно широко распространено в природе. В частности, земная атмосфера находится в гидростатическом равновесии под действием силы гравитационного притяжения Земли и давления находящихся в ней газов. Если бы не было давления, земная атмосфера очень быстро «упала» бы на поверхность нашей планеты. Следует подчеркнуть, что гидростатическое равновесие в звездных атмосферах осуществляется с огромной точностью. Малейшее его нарушение сразу же приводит к появлению сил, меняющих распределение вещества в звезде, после чего происходит такое его перераспределение, при котором равновесие восстанавливается. Здесь мы всегда говорим об обычных «нормальных» звездах. В исключительных случаях, о которых в этой книге будет идти речь, нарушение равновесия между силой гравитации и давлением газа приведет к весьма серьезным, даже катастрофическим последствиям в жизни звезды. А сейчас мы можем только сказать, что история существования любой звезды — это поистине титаническая борьба между силой гравитации, стремящейся ее неограниченно сжать, и силой газового давления, стремящейся ее «распылить», рассеять в окружающем межзвездном пространстве. Многие миллионы и миллиарды лет длится эта «борьба». В течение этих чудовищно больших сроков силы равны. Но в конце концов, как мы увидим дальше, победа будет за гравитацией. Такова драма эволюции любой звезды. Ниже мы будем довольно подробно останавливаться на отдельных этапах этой драмы, связанных с финальными стадиями эволюции звезд.
В центральной части «нормальной» звезды вес вещества, заключенного в столбе, площадь основания которого равна одному квадратному сантиметру, а высота — радиусу звезды, будет равен давлению газа у основания столба. С другой стороны, масса столба равна силе, с которой он притягивается к центру звезды.
Мы сейчас проведем весьма упрощенный расчет, который, тем не менее, вполне отражает существо вопроса. А именно, положим массу нашего столба M 1= R , где
— средняя плотность звезды, и будем считать, что «эффективное» расстояние между центром звезды и основанием столба равно R/ 2. Тогда условие гидростатического равновесия запишется так:
![]() |
(6.1) |
Сделаем теперь оценку величины газового давления P в центральной части такой звезды, какой является наше Солнце. Подставив численное значение величин, стоящих в правой части этого уравнения, найдем, что P = 10 16дин/см 2, или 10 миллиардов атмосфер! Это неслыханно большая величина. Самое высокое «стационарное» давление, достигаемое в земных лабораториях, порядка нескольких миллионов атмосфер [ 17 ] Заметим, однако, что при фокусировке мощного лазерного луча на мишень (которая, конечно, при этом мгновенно испарится) в течение 10 - 9 секунды может возникнуть давление отдачи на нее (обусловленное испаряющимися атомами), достигающее 10 12 атмосфер!
.
Из элементарного курса физики известно, что давление газа зависит от его плотности и температуры T . Формула, связывающая все эти величины, носит название «формулы Клапейрона»: P =
T . С другой стороны, плотность в центральных областях «нормальных» звезд, конечно, больше, чем средняя плотность, но не существенно больше. В таком случае, из формулы Клапейрона непосредственно следует, что одна лишь большая плотность звездных недр сама по себе не в состоянии обеспечить достаточно высокое давление газа, чтобы выполнялось условие гидростатического равновесия. Необходимо прежде всего, чтобы температура газа была достаточно высока.
В формулу Клапейрона входит также средняя молекулярная масса . Основным химическим элементом в атмосферах звезд является водород, и нет оснований полагать, что в недрах по крайней мере большинства звезд химический состав должен существенно отличаться от наблюдаемого в наружных слоях. В то же время, так как ожидаемая температура в центральных областях звезд должна быть достаточно велика, водород там должен быть почти полностью ионизован, т. е. «расщеплен» на протоны и электроны. Так как масса последних пренебрежимо мала по сравнению с протонами, а количество протонов равно количеству электронов, то средняя молекулярная масса этой смеси должна быть близка к 1 / 2. Тогда из уравнений (6.1) и формулы Клапейрона следует, что температура в центральных областях звезд по порядку величин равна
![]() |
(6.2) |
Величина /
c может быть порядка 1 / 10. Она зависит от структуры звездных недр (см. § 12). Из формулы (6.2) следует, что температура в центральных областях Солнца должна быть порядка десяти миллионов кельвинов. Более точные расчеты отличаются от полученной нами сейчас оценки всего лишь на 20—30%. Итак, температура в центральных областях звезд исключительно велика — примерно в тысячу раз больше, чем на их поверхности. Теперь обсудим, каковы должны быть свойства вещества, нагретого до такой высокой температуры. Прежде всего такое вещество, несмотря на свою большую плотность, должно находиться в газообразном состоянии. Об этом речь уже шла выше. Но мы можем теперь уточнить это утверждение. При такой высокой температуре свойства газа в недрах звезд, несмотря на его высокую плотность, будут почти неотличимы от свойств идеального газа , т. е. такого газа, в котором взаимодействия между составляющими его частицами (атомами, электронами, ионами) сводятся к столкновениям. Именно для идеального газа справедлив закон Клапейрона, которым мы воспользовались при оценке температуры в центральных областях звезд.
Интервал:
Закладка: