Иосиф Шкловский - Звезды: их рождение, жизнь и смерть
- Название:Звезды: их рождение, жизнь и смерть
- Автор:
- Жанр:
- Издательство:Наука, Главная редакция физико-математической литературы
- Год:неизвестен
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Иосиф Шкловский - Звезды: их рождение, жизнь и смерть краткое содержание
Книга посвящена центральной проблеме астрономии — физике звезд. Заключительный этап звездной эволюции представляет особенно большой интерес, так как он имеет прямое отношение к таким интереснейшим объектам современной астрономии, как пульсары, рентгеновские звезды и черные дыры. Проблемы, связанные с этими объектами, пока далеки от решения. Поэтому автор стремился осветить фактическое состояние вопроса, давая лишь общее представление о существующих: теориях и гипотезах. В книге рассматривается также проблема образования звезд.
Книга рассчитана на широкий круг лиц со средним образованием. Специальный интерес она представляет для студентов, лекторов, преподавателей, специалистов в области смежных наук.
Звезды: их рождение, жизнь и смерть - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
![]() |
Рис. 16.3:Туманность IС 443 (созвездие Близнецов) — остаток вспышки сверхновой. Вверху — яркая звезда ![]() |
Температура газа на периферии системы тонковолокнистых туманностей в созвездии Лебедя согласно формуле (16.1) должна быть около 3 миллионов кельвинов. Следует представить себе огромную радиусом в 20 пс оболочку, где межзвездный газ нагрет до такой высокой температуры, а в ней заключены сравнительно холодные, плотные нитевидные волокна, изображенные на рис. 16.2. Основная масса газа в оболочке радиусом R 2= 20 пс имеет высокую температуру, а холодные нити — это только небольшие «вкрапления». Аналогичную структуру имеют и другие остатки сверхновых. Таким образом, вплоть до сравнительно недавнего времени основная часть газа, находящегося в остатках вспышек сверхновых, была ненаблюдаема, так как оптическое излучение весьма разреженного, очень горячего газа ничтожно мало.
Развитие рентгеновской астрономии коренным образом изменило эту ситуацию. В 1970 г. был обнаружен источник мягкого рентгеновского излучения на месте системы волокнистых туманностей в созвездии Лебедя. Этот источник имеет угловые размеры, близкие к угловым размерам системы туманностей. Из вида рентгеновского спектра следует, что излучающий газ имеет температуру несколько миллионов кельвинов. Любопытно, что плазма с такой температурой и химическим составом, подобным химическому составу межзвездной среды, должна излучать интенсивные спектральные линии излучения, главным образом сильно ионизованных атомов кислорода, у которых осталось только 1—2 внутренних электрона. Эти линии находятся в мягкой рентгеновской области спектра и имеют длину около 20 Å. Они действительно обнаружены в рентгеновском спектре волокнистых туманностей в созвездии Лебедя (см. рис. 16.2). В близком будущем рентгеновская спектроскопия таких объектов позволит получить весьма ценную информацию о физических условиях в остатках вспышек сверхновых.
Хотя разрешающая способность современных детекторов космического рентгеновского излучения еще низка (ем. введение), очень большие угловые размеры системы волокнистых туманностей в Лебеде позволяют получить хотя и грубое, но все же вполне реальное рентгеновское изображение этого источника. Оно приведено на рис. 16.4. Из этого рисунка прежде всего отчетливо видна оболочечная структура излучающей области, что находится в полном согласии с описанной выше теорией. Излучающее вещество находится на периферии огромной, квазисферической области, хотя распределение его весьма нерегулярно.
Это объясняется, как мы уже говорили выше, неоднородным распределением плотности в окружающей взорвавшуюся звезду межзвездной среде. Можно заметить также грубое соответствие между распределением рентгеновского и оптического излучений.
Мы уже упоминали о рентгеновском телескопе, установленном на обсерватории «Эйнштейн». Этот прибор работал в мягком рентгеновском диапазоне, регистрируя кванты с энергией в интервале 0,1—4,5 кэВ. Он обладал неслыханной до этих пор чувствительностью — до 3 10 -14эрг/см 2
с (при времени накопления квантов от источника около суток).
С помощью этого рентгеновского телескопа был выполнен ряд выдающихся по своему значению наблюдений. В частности, проводилось систематическое исследование остатков вспышек сверхновых. Всего было получено свыше 100 рентгеновских изображений таких объектов. Другими словами, были исследованы все известные остатки сверхновых в нашей Галактике и в Магеллановых Облаках. Это дало возможность построить эволюционную последовательность таких объектов, оказавшуюся в полном согласии с развитой нами теорией, основывающейся на формуле Седова (16.1).
![]() |
Рис. 16.4:Рентгеновские изображения тонковолокнистых туманностей в созвездии Лебедя в двух спектральных участках. |
До сих пор речь шла об оптическом и рентгеновском излучении туманностей, образовавшихся после вспышек сверхновых. Оба эти вида излучения являются простым следствием высокой температуры в плазме, образующейся за фронтом распространяющейся от очага взрыва ударной волны в межзвездной среде. Однако уже на заре радиоастрономии было обнаружено, что остатки вспышек сверхновых являются мощными источниками радиоизлучения совершенно особой природы. Обнаружение радиоизлучения от остатков вспышек сверхновых, бесспорно, является важнейшим этапом в истории изучения этих объектов. Как мы увидим дальше, исследование радиоизлучения является весьма эффективным методом анализа физических условий в расширяющихся оболочках — остатках взорвавшихся звезд. А это в свою очередь приближает нас к пониманию самого процесса взрыва звезд. Особый интерес представляет еще и то обстоятельство, что открывается возможность чисто радиоастрономическим методом определить расстояние до источников, что имеет, конечно, очень важное значение для понимания их природы. Перейдем теперь к изложению основных результатов наблюдений радиоизлучения остатков вспышек сверхновых.
В 1948 г. английские радиоастрономы Райл и Смит обнаружили на северном небе в созвездии Кассиопеи необыкновенно яркий источник радиоизлучения, названный ими «Кассиопея А». В то время радиоастрономия переживала начальный, «героический» период своего развития. Выдающиеся открытия, совершаемые бывшими офицерами радиолокационной службы, следовали одно за другим. За два года до открытия Кассиопеи А другая группа английских радиоастрономов открыла первый «дискретный» источник радиоизлучения на небе — знаменитый «Лебедь А», который, как выяснилось через 5 лет, представляет собой удаленную галактику. Это была первая радиогалактика! На метровых волнах поток радиоизлучения от Кассиопеи А почти в два раза превышает поток от Лебедя А и довольно близок к потоку радиоизлучения от «спокойного» Солнца (т. е. в периоды, когда нет пятен, вспышек и других проявлений активности). Тот факт, что весьма удаленный от нас космический объект посылает поток почти такой же, как и «рядом» находящееся Солнце, сам по себе поразителен. Он говорит о необычности космических явлений в радиодиапазоне и о коренном отличии этих явлений от оптических. Сейчас, спустя 35 лет после открытия Кассиопеи А, радиоастрономия шагнула далеко вперед. На пределе своих возможностей она может зарегистрировать потоки радиоизлучения, в миллионы раз меньшие, чем от Кассиопеи А. Подавляющее большинство слабых источников представляют собой метагалактические объекты. Только малая часть сравнительно ярких известных источников отождествляется с остатками вспышек сверхновых. Вернемся, однако, к Кассиопее А.
Читать дальшеИнтервал:
Закладка: