Иосиф Шкловский - Звезды: их рождение, жизнь и смерть
- Название:Звезды: их рождение, жизнь и смерть
- Автор:
- Жанр:
- Издательство:Наука, Главная редакция физико-математической литературы
- Год:неизвестен
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Иосиф Шкловский - Звезды: их рождение, жизнь и смерть краткое содержание
Книга посвящена центральной проблеме астрономии — физике звезд. Заключительный этап звездной эволюции представляет особенно большой интерес, так как он имеет прямое отношение к таким интереснейшим объектам современной астрономии, как пульсары, рентгеновские звезды и черные дыры. Проблемы, связанные с этими объектами, пока далеки от решения. Поэтому автор стремился осветить фактическое состояние вопроса, давая лишь общее представление о существующих: теориях и гипотезах. В книге рассматривается также проблема образования звезд.
Книга рассчитана на широкий круг лиц со средним образованием. Специальный интерес она представляет для студентов, лекторов, преподавателей, специалистов в области смежных наук.
Звезды: их рождение, жизнь и смерть - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Из наблюдаемой скорости расширения систем волокон Кассиопеи А можно получить возраст этого объекта. Оказывается, что взрыв звезды, явившийся причиной образования Кассиопеи А, произошел около 1667 г. (примерно между 1659 и 1675 г.). Представляется удивительным, почему европейские астрономы, которые так успешно наблюдали почти за столетие до этого Новые Тихо и Кеплера, решительно ничего не заметили в созвездии Кассиопеи. Почему же это так получилось? Почему «прозевали» вспышку этой сверхновой в эпоху, когда в Европе уже были обсерватории? Конечно, видимая яркость звезды зависит не только от мощности ее излучения, но и от расстояния до нее. Каково же расстояние до Кассиопеи А?
Первая надежная оценка расстояния до этого источника была получена радиоастрономическим методом. Метод основывается на изучении линии поглощения в радиоспектре источника на волне 21 см. Эта линия образуется в результате поглощения радиоизлучения межзвездными атомами водорода. Так как последние концентрируются преимущественно в спиральных рукавах Галактики, которые имеют друг относительно друга разные скорости, то это отразится на «профиле» линии, которая разобьется на несколько компонент, соответствующих водородному поглощению в различных рукавах. Так как в направлении на Кассиопею А существуют три спиральных рукава, а профиль линии поглощения состоит из двух резко выраженных провалов интенсивности, то сразу же можно сделать вывод, что источник радиоизлучения расположен где-то между вторым и третьим рукавом спиральной структуры (рис. 16.7), откуда следует, что расстояние до него около трех тысяч парсек (т. е. около десяти тысяч световых лет). Такое же расстояние получается из сравнения наблюдаемой скорости «расползания» волокон туманности по небесной сфере (они, естественно, определяются в угловых единицах, например, секундах дуги в год) со скоростью волокон по лучу зрения, определяемой из измеренного доплеровского смещения спектральных линий.
![]() |
Рис. 16.7:Схема, поясняющая радиоастрономический метод определения расстояния до туманности Кассиопея А. |
Итак, расстояние до Кассиопеи А около 3000 пс. Если бы не было межзвездного поглощения света, видимая величина вспыхнувшей сверхновой (абсолютная величина которой, как можно полагать, была около -20 m ; см. § 15) была бы -7 m , т. е. она должна была казаться, пожалуй, даже ярче, чем сверхновая 1054 г., так поразившая китайцев, японцев и, возможно аборигенов Северной Америки. Чтобы такое удивительное явление, случившееся в области неба, которая никогда не опускается под горизонт, было бы не замечено, следует принять, что поглощение света должно быть как минимум 7—8 величин (т. е. больше, чем в 1000 раз), и еще дополнительно предположить, что в то время над всей Европой стояла несколько недель подряд ненастная погода, которая как раз случилась тогда, когда сверхновая была в максимуме своего блеска... Конечно, в принципе это может быть. Но поглощение света в направлении Кассиопеи А хотя и велико, но не настолько: около 4,3 звездной величины. О возможной причине ненаблюдаемости этой сверхновой см. § 18.
Выше уже упоминалось, что, кроме быстро движущихся волокон, в Кассиопее А наблюдаются почти стационарные конденсации. Скорее всего, эти конденсации представляют собой сжатый ударной волной межзвездный газ. Похоже, однако, на то, что химический состав этих конденсаций не совсем обычен: азот там аномально обилен по отношению к кислороду. Если это так, то остается только считать, что ударная волна от взрыва распространялась уже не по межзвездной среде, а по оболочке, «вытекшей» из звезды, которая взорвалась как сверхновая. Таким образом, все особенности весьма своеобразного остатка сверхновой Кассиопеи А объясняются молодостью этого объекта.
В 1966 г. было обнаружено рентгеновское излучение от Кассиопеи А. В отличие от рентгеновского излучения от других, гораздо более «старых» остатков сверхновых, рентгеновское излучение от Кассиопеи А значительно жестче. Как мощность, так и спектр рентгеновского излучения Кассиопеи А естественно объясняется теорией, развитой выше. Заметим в этой связи, что в окрестностях Кассиопеи А плотность межзвездного газа повышена ( N e 10—20 см -3), что обеспечивает необходимую мощность рентгеновского излучения, которая пропорциональна N e 2 R 3, где R — радиус туманности. Большая жесткость теплового рентгеновского излучения от Кассиопеи А объясняется огромной температурой (
3
10 7К) плазмы за фронтом волны, что в свою очередь объясняется большой скоростью расширения этой туманности, т. е. в конечном результате — ее молодостью.
Перейдём теперь к основному вопросу о природе радиоизлучения от остатков вспышек сверхновых. В настоящее время обнаружено радиоизлучение практически от всех ионизованных газовых туманностей, как «диффузных», так и планетарных. Однако это излучение, если можно так выразиться, носит тривиальный характер. Оно является чисто тепловым, и его интенсивность и спектр определяются известным законом Кирхгофа:
![]() |
(16.5) |
где I — наблюдаемая интенсивность, B
( T ) = 2 kT/
2 — интенсивность излучения абсолютно черного тела,
— коэффициент поглощения на данной частоте, l — протяженность источника в направлении луча зрения. Величина
l носит название «оптической толщи». При достаточно большой оптической толще
![]() |
(16.6) |
т. е. вне зависимости от физических свойств источника она будет иметь некоторое совершенно определенное значение, зависящее только от частоты и температуры излучающего ионизованного газа. Если
1, то формула (16.5) примет вид
Интервал:
Закладка: