Айзек Азимов - Нейтрино - призрачная частица атома
- Название:Нейтрино - призрачная частица атома
- Автор:
- Жанр:
- Издательство:Атомиздат
- Год:1969
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Айзек Азимов - Нейтрино - призрачная частица атома краткое содержание
В книге известного популяризатора науки А. Азимова в живой и популярной форме изложены современные представления о самой неуловимой частице микромира — нейтрино. Азимов прослеживает цепь событий, приведших физиков к открытию нейтрино, рассказывает о том, как эту частицу научились регистрировать, о ее роли в эволюции Вселенной, о последних достижениях нейтринной физики — двухнейтринном эксперименте. Автор стремится раскрыть перед читателем современную физическую картину мира, но в то же время не подавить его массой сведений, столь обширных в этой области науки.
Книгой заинтересуются самые широкие круги читателей: школьники, преподаватели и те, кто следит за новейшими достижениями физики.
Нейтрино - призрачная частица атома - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
При исследованиях атомных частиц физики обычно разгоняют их до огромных скоростей, подвергая такие частицы действию электрического поля. Сила электрического поля, заставляющая атомную частицу двигаться быстрее и, следовательно, увеличивающая ее кинетическую энергию, измеряется в вольтах. (Эта единица названа по имени итальянского физика Алессандро Вольты, впервые сконструировавшего в 1800 году электрическую батарею.)
Электрон, находясь под действием электрического потенциала в один вольт, получает определенное количество энергии. Такая величина энергии называется электронвольтом и сокращенно обозначается эв. Тысяча электронвольт обозначается кэв, миллион электронвольт — Мэв, миллиард — Бэв (иногда миллиард электронвольт называют гигаэлектронвольтом и обозначают Гэв):
Один злектронвольт равен 1,602 · 10 -12 эрг. Эта величина немногим больше одной триллионной эрга и удобна для выражения изменения энергии атомов и субатомных частиц [10] [10] Можно почувствовать раздражение от такого разнообразия единиц энергии: злектронвольт, эрг, джоуль, калория. Однако каждая имеет свою собственную область применения. Ведь никому не придет в голову измерять расстояние между двумя городами в миллиметрах, длину комнаты в километрах, а диаметр копейки в метрах!
.
Предположим, например, что углерод соединяется с кислородом и образует двуокись углерода. Каждый грамм углерода, соединяясь таким образом, выделяет 7807 кал. Один атом углерода, соединяясь с двумя атомами кислорода при образовании молекулы двуокиси углерода, освобождает немногим более 4 эв.
Это типичная величина энергии, освобождаемая одним атомом в процессе химических реакций. Сравним ее с величиной энергии α-частицы, вылетающей из атома урана. Крошечная величина в 1,3 · 10 -5 эрг, выраженная в электронвольтах, огромна — 8 Мэв. Один атом, испускающий при радиоактивном распаде субатомную частицу, выделяет в два миллиона раз больше энергии, чем такой же атом во время обычной химической реакции. Почему?
Ha этот вопрос можно дать разумный ответ на основе модели строения атома, созданной в XIX веке. Обычные химические реакции связаны с изменением расположения электронов в атоме, а при изменении положения этих легких частиц затрачивается энергия в несколько электронвольт. С другой стороны, радиоактивные превращения, такие, как излучение α-частиц, происходят в результате изменения расположения нуклонов в ядрах. Нуклоны гораздо тяжелее электронов и находятся в невообразимой тесноте. Энергии, удерживающие их, в миллионы раз больше тех, которые удерживают электроны. Когда при перераспределении нуклонов выделяется энергия, она излучается соответственно большими порциями. В этом случае в отличие от обычных химических реакций говорят о ядерных реакциях и в отличие от обычной химической энергии — о ядерной энергии. Радиоактивность— одно из первых обнаруженных проявлений ядерной энергии.
Тогда, может быть, именно ядерная энергия, о которой не имели понятия во времена Гельмгольца, служит постоянным неисчерпаемым источником солнечной радиации? Спектроскопия достаточно убедительно доказала, что в действительности Солнце состоит в основном из водорода. Что из этого следует?
За короткое время физики подробно изучили ядерные реакции, протекающие на Солнце: насколько они вероятны, какая энергия излучается и т. д. Уже в 1938 году немецкий физик Ганс Альбрехт Бете, работавший в США, вывел цепочку ядерных реакций, которые могут протекать в условиях, существующих внутри Солнца. В результате таких реакций четыре атома водорода превращаются в один атом гелия, при этом выделяется энергия, примерно равная 27,6 Мэв. Если подобные реакции действительно происходят на Солнце, как долго излучало бы оно энергию, если с самого начала состояло только из водорода, который превращался в гелий в количествах, достаточных, чтобы энергия излучалась с необходимой скоростью? Оказывается, около сотни миллиардов лет. Следовательно, ядерная энергия полностью решает вопрос об энергетическом балансе Солнца. Солнцу незачем сжиматься. А геологам и биологам не стоит больше сомневаться относительно возраста Земли.
В настоящее время по максимальным оценкам возраст Земли равен пяти миллиардам лет. Но Солнце излучало энергию с теперешней интенсивностью все это время без заметного изменения своего внешнего вида и без существенных изменений запасов водородного топлива. Фактически так может продолжаться еще десятки миллиардов лет.
Чтобы поставить на этом точку, добавлю, что человечество вскоре научилось само получать ядерную энергию и в конце концов создало водородную бомбу, в которой используются ядерные реакции, аналогичные тем, которые происходят на Солнце.
Глава 4. Связь массы и энергии
Несохранение массы
Новое представление о строении атома укрепило уверенность физиков в том, что законы сохранения применимы не только к окружающему нас повседневному миру, но и к тому огромному миру, который изучают астрономы. Но справедливы ли законы сохранения в невообразимо малом мире атома? Применимы ли одни и те же основные обобщения и к мельчайшим частицам вещества и к очень большим телам?
Кажется, да. Например, быструю α-частицу можно сделать в некотором смысле видимой, если пропустить ее через камеру Вильсона, — камеру с пересыщенным водяными парами газом. Пересыщенный газ содержит больше водяных паров, чем при обычных условиях. Этот пар стремится выделиться в виде капель жидкости. Такие капельки наиболее легко образуются около мелких твердых частиц, которые притягивают молекулы воды или которые имеют такую форму, что молекулы воды легко садятся на них. Это — центры конденсации. Обычно воздух содержит пылинки, крупинки соли морской воды и другие материальные частицы, которые могут служить подобными центрами. Если таких центров конденсации нет пар не будет конденсироваться до тех пор, пока пересыщение не станет очень сильным или температура необычайно низкой.
Газ в камере Вильсона специально очищается от всех пылинок чтобы водяные пары не выделялись в виде капелек. α-Частица, пролетая через камеру, сталкивается на своем пути с молекулами газа и выбивает электроны из атомов этих молекул. Такие атомы, в которых теперь недостает электронов, называются ионами. Ионы в отличие от обычных атомов могут служить центрами конденсации водяных капель. Таким образом, путь пролетающей α-частицы становится видимым благодаря следу из водяных капелек, образующихся вокруг создаваемых ею ионов.
Читать дальшеИнтервал:
Закладка: