Айзек Азимов - Нейтрино - призрачная частица атома
- Название:Нейтрино - призрачная частица атома
- Автор:
- Жанр:
- Издательство:Атомиздат
- Год:1969
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Айзек Азимов - Нейтрино - призрачная частица атома краткое содержание
В книге известного популяризатора науки А. Азимова в живой и популярной форме изложены современные представления о самой неуловимой частице микромира — нейтрино. Азимов прослеживает цепь событий, приведших физиков к открытию нейтрино, рассказывает о том, как эту частицу научились регистрировать, о ее роли в эволюции Вселенной, о последних достижениях нейтринной физики — двухнейтринном эксперименте. Автор стремится раскрыть перед читателем современную физическую картину мира, но в то же время не подавить его массой сведений, столь обширных в этой области науки.
Книгой заинтересуются самые широкие круги читателей: школьники, преподаватели и те, кто следит за новейшими достижениями физики.
Нейтрино - призрачная частица атома - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Заметить исчезновение четырех десятимиллионных грамма из общей массы порядка тысячи граммов было за пределами возможностей химии XIX века. Поэтому даже наиболее точные измерения не обнаружили противоречия в законе сохранения массы. Закон сохранения массы используется до сих пор при рассмотрении химических реакций.
Закон сохранения массы и энергии
В ядерных реакциях изменения энергии столь значительны, что эквивалентностью массы и энергии уже нельзя пренебречь. Если следить за изменением одной только массы, кажется, что закон сохранения нарушается.
Чтобы убедиться в этом, рассмотрим соотношение между массой и энергией в единицах атомной шкалы масс. Тогда в уравнение е = тс 2 будет входить не 1 г масссы, а масса 1 по атомной весовой шкале, приблизительно равная весу ядра атома водорода-1, самого легкого из известных атомных ядер. В действительности масса 1 по атомной шкале равна 1,67 · 10 -24 г.
Несмотря на громадную величину с 2, энергия, которой эквивалентна такая ничтожная масса, составляет только 0,0015 эрг.
В обычных повседневных масштабах 0,0015 эрг действительно величина небольшая, но по атомной шкале она равна примерно одному миллиарду электронвольт — это уже внушительная цифра. По данным последних измерений, масса 1 по шкале атомных весов эквивалентна 0,931478 Гэв или 931,478 Мэв.
Если положить массу ядра водорода равной 1,00797, она будет эквивалентна энергии 0,938 905 Бэв, а масса четырех таких ядер водорода эквивалентна энергии 3,75562 Гэв. С другой стороны, масса ядра гелия, равная 4,00280 по шкале атомных весов, эквивалентна энергии 3,72803 Гэв. Когда четыре ядра водорода превращаются в одно ядро гелия, потеря массы, следовательно, составляет 0,02759 Гэв или 27,59 Мэв. Измеренная величина выделяющейся при этой реакции энергии оказалась очень близка к теоретической. Исследования показали, что во всех ядерных реакциях такого типа выделенная энергия соответствует исчезнувшей массе согласно уравнению Эйнштейна. В результате стало привычным говорить не о законе сохранения только массы или только энергии, а о законе сохранения массы и энергии. Однако можно говорить просто о законе сохранения энергии, имея в виду, что масса есть форма энергии. Именно так я буду поступать в дальнейшем.
Вернемся теперь к источнику солнечной энергии. Если действительно она возникает за счет превращения ядер водорода в гелий, колоссальная энергия, которая при этом образуется и излучается в окружающее пространство, должна быть сбалансирована эквивалентным исчезновением массы.
Суммарная энергия излучения Солнца, как я уже говорил, равна 5,6 · 10 27 кал/мин, что эквивалентно 3,8 · 10 33 эрг/сек. Поделив на с 2, получим, что излучение этой
энергии эквивалентно потере 4,2 · 10 12 г в 1 сек , или 276 000 000 т в 1 мин.
По метеоритной теории солнечного излучения, каждую минуту на Солнце попадает 1,2 · 10 20 г метеоритного вещества. Такая постоянная добавка к солнечной массе уменьшает продолжительность каждого года на две секунды. Потеря массы при превращении водорода в гелий составляет примерно одну тридцатимиллионную прироста массы, требующегося по метеоритной теории. В результате потери солнечной массы за счет ядерных реакций год увеличился бы только на одну секунду за пятнадцать миллионов лет. Изменение длины года трудно обнаружить, и оно не имеет для нас практического значения.
Фотоны
Теперь сделаем наоборот. Рассмотрев массу как проявление энергии, рассмотрим энергию как проявление массы. Фотон, например, обладает определенной величиной энергии, а она должна быть в свою очередь эквивалентна определенной величине массы.
Рис. 3. Спектр электромагнитных волн.
Согласно квантовой теории Планка, энергию фотона легко определить по длине световой волны. Чтобы выразить эту энергию в электронвольтах, надо величину 1,24 · 10 -4, полученную в результате цепочки математических доказательств, приводить которые нет необходимости, разделить на длину волны света в сантиметрах. Величина самых длинных волн видимого света (темно-красного по цвету) равна грубо 7 · 10 -5 см, а самых коротких (темно-фиолетового) 3,5 · 10 -5 см. Следовательно, фотон самых длинных волн видимого света имеет энергию 1,8 эв, а самых коротких — 3,6 эв, т. е. с уменьшением длины волны пропорционально увеличивается энергия соответствующего фотона. В результате химических реакций освобождается около 4 эв энергии на каждый атом, поэтому не удивительно, что фотоны, возникающие при этом, часто находятся в диапазоне энергий видимого света.
Фотоны инфракрасного излучения обладают меньшими энергиями. Они невидимы, но мы можем ощущать их как тепло, поглощаемое кожей. Энергии фотонов ультракоротких и радиоволн еще меньше.
Обладающие большими энергиями фотоны ультрафиолетового излучения, испускаемого при некоторых химических реакциях, тоже невидимы, но их можно легко обнаружить по воздействию на фотопластинку. Длины волн ультрафиолетового света так малы, что энергия фотонов достигает 1000 эв. За областью самого коротковолнового ультрафиолетового света лежит область еще более коротких рентгеновских лучей, энергия фотонов которых находится в диапазоне от 1 до 100 кэв. И, наконец, энергии фотонов γ-лучей лежат в области миллионов электронвольт. Не удивительно поэтому, что ядерные реакции, освобождающие энергию в миллионы электронвольт, приводят в результате к образованию γ-квантов.
Какой массе эквивалентны фотоны? Для сравнения больше всего подходит масса электрона, равная 1/1836,11 массы ядра водорода и эквивалентная 0,51 Мэв, так как энергия, эквивалентная массе протона, значительно больше энергии даже самых коротковолновых фотонов γ-излучения. Энергия фотона видимого света в среднем равна 2,5 эв, следовательно, эквивалентная ей масса представляет собой лишь 1/200 000 массы электрона, т. е. без большой погрешности можно считать, что фотоны видимого света не имеют массы.
Эквивалентная масса фотонов возрастает по мере уменьшения длины волны излучения. γ-Излучение с длиной волны 2,4 · 10 -10 см состоит из фотонов, масса которых равна массе электрона. Следовательно, корпускулярные свойства фотонов γ-излучения легко обнаружить прибором, используемым при изучении электронов.
Это было проделано в 1923 году американским физиком Артуром Холли Комптоном. Он обнаружил, что фотон рентгеновских лучей с эквивалентной массой, гораздо меньшей, чем у электрона, сталкиваясь с электроном, отскакивает от него рикошетом. Электрон получает энергию. а фотон теряет ее, как и в случае столкновения двух электронов. Более того, фотон ведет себя как частица, обладающая импульсом. При взаимодействии его с электроном выполняется закон сохранения импульса.
Читать дальшеИнтервал:
Закладка: