LibKing » Книги » sci-phys » Айзек Азимов - Нейтрино - призрачная частица атома

Айзек Азимов - Нейтрино - призрачная частица атома

Тут можно читать онлайн Айзек Азимов - Нейтрино - призрачная частица атома - бесплатно полную версию книги (целиком). Жанр: sci-phys, издательство Атомиздат, год 1969. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте LibKing.Ru (ЛибКинг) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Айзек Азимов - Нейтрино - призрачная частица атома
  • Название:
    Нейтрино - призрачная частица атома
  • Автор:
  • Жанр:
  • Издательство:
    Атомиздат
  • Год:
    1969
  • ISBN:
    нет данных
  • Рейтинг:
    3.3/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Ваша оценка:

Айзек Азимов - Нейтрино - призрачная частица атома краткое содержание

Нейтрино - призрачная частица атома - описание и краткое содержание, автор Айзек Азимов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

В книге известного популяризатора науки А. Азимова в живой и популярной форме изложены современные представления о самой неуловимой частице микромира — нейтрино. Азимов прослеживает цепь событий, приведших физиков к открытию нейтрино, рассказывает о том, как эту частицу научились регистрировать, о ее роли в эволюции Вселенной, о последних достижениях нейтринной физики — двухнейтринном эксперименте. Автор стремится раскрыть перед читателем современную физическую картину мира, но в то же время не подавить его массой сведений, столь обширных в этой области науки.

Книгой заинтересуются самые широкие круги читателей: школьники, преподаватели и те, кто следит за новейшими достижениями физики.

Нейтрино - призрачная частица атома - читать онлайн бесплатно полную версию (весь текст целиком)

Нейтрино - призрачная частица атома - читать книгу онлайн бесплатно, автор Айзек Азимов
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать

Из-за незаметного изменения движения Земли кажется, что импульс не сохраняется. Рассмотрев приведенные примеры, мы чувствуем некоторую уверенность, возводя обобщение в ранг закона сохранения импульса. Это обобщение очень просто можно выразить следующим образом: суммарный импульс замкнутой системы остается постоянным.

Под замкнутой системой мы подразумеваем любое тело или совокупность тел, на которые никоим образом не влияют окружающие условия. В действительности, никакая совокупность тел, строго говоря, не изолирована, и закон сохранения импульса считают абсолютно верным только для всей Вселенной. Однако системы, меньшие чем Вселенная, часто рассматриваются с достаточной точностью практически изолированными. Например бильярдные шары вместе со столом, киями и игроками можно считать изолированной системой, пока во время игры не произойдет землетрясение или, преследуя шар, на стол не прыгнет хозяйский кот и т. п.

Важно понять, что закон сохранения импульса (подобно всем другим законам сохранения, которые я буду упоминать в книге), является результатом экспериментальных наблюдений, а не логических выводов. Точнее говоря, нельзя утверждать, что импульс должен сохраняться при всех условиях. Импульс сохраняется при всех условиях, которые когда-либо наблюдались, и с той степенью точности, с которой его измеряли.

В таком случае, имеем ли мы право утверждать, что закон никогда не нарушается? Все, чем мы располагаем, — это наш опыт, а он может быть недостаточным В начале главы казалось, что существует закон сохранения скорости, но когда опыт расширился, он сам собой отпал. Случится ли что-либо подобное с законом сохранения импульса? Если не сейчас, то когда-нибудь? Да, конечно, может случиться. В последние годы некоторые важные законы сохранения неожиданно перестали существовать. (Позднее я опишу один такой случай.)

Тем не менее, когда наблюдается явление, которое как кажется на первый взгляд, доказывает несостоятельность важного обобщения, ученым следует тщательно изучить это явление. Нельзя ли его интерпретировать так, чтобы оно не противоречило закону? Если это можно сделать, тем лучше.

Но в случае закона сохранения импульса с ним согласуется множество наблюдений, начиная с космических звездных систем и кончая микросистемами субатомных частиц, и ученым в самом деле трудно согласиться с каким-либо его нарушением. Они готовы принять почти любое объяснение нарушения закона, лишь бы спасти обобщение. Закон сохранения импульса оказался так не-обыкновенно полезен на протяжении приблизительно трех столетий, что ученые, естественно, стремятся сохранить его.

Сохранение момента количества движения

Движение не обязательно должно представлять собой изменение положения. Если бильярдный шар быстро вращается, не трогаясь с места, было бы несправедливо считать такой шар неподвижным. Кроме того, шар может двигаться по прямой линии и одновременно вращаться. Любое тело, которое движется по окружности или вращается вокруг своей оси (например, Земля вращается вокруг своей оси и вокруг Солнца), обладает угловой скоростью и имеет угловой импульс, или момент количества движения. По аналогии с обычным импульсом можно также предположить, что момент количества движения равен угловой скорости, умноженной на массу [3] [3] Иногда импульс называют линейным, чтобы подчеркнуть, что он — результат движения по прямой линии, в противоположность угловому импульсу, или моменту количества движения, возникающему при движении по кривой. . Но это неверно. Вообразите, что вы стоите на вращающемся столике, держа в каждой руке по тяжелой гире и прижимая их к себе. Вы раскручиваетесь и, если столик вращается почти без трения, будете продолжать вращаться с примерно постоянной угловой скоростью довольно долго. Пусть, например, эта скорость равна двум оборотам в секунду. Если бы момент количества движения равнялся произведению массы на угловую скорость и если бы он сохранялся, вы могли бы изменить угловую скорость, меняя свою массу. Если бы, например, кто-нибудь взял гири из ваших рук, масса на вращающемся столике уменьшилась бы, а ваша угловая скорость увеличилась. Если бы вам в руки дали добавочный груз, ваша угловая скорость уменьшилась бы. Если бы момент количества движения зависел только от массы и угловой скорости, то вы, казалось, могли бы изменить угловую скорость, только изменяя массу.

Предположим, вы стоите на вращающемся столе, держа свои гири у туловища и делая два оборота в секунду. Выпрямите руки с гирями насколько возможно. Внезапно ваша угловая скорость уменьшится, и вы будете двигаться со скоростью, возможно, не более одного оборота в секунду. Прижмите руки опять к туловищу — и угловая скорость станет прежней.

Что же случилось? Ведь общая масса на столе не изменилась от того, что вы вытянули руки! Тогда почему же изменилась угловая скорость? Она должна измениться в ответ на определенные изменения в системе, зависящие не от величины массы. Логично предположить, что в момент количества движения входит расстояние массы от оси вращения. Расстояние части массы (ваших рук с гирями в них) от оси вращения увеличилось. Если это расстояние входит в момент количества движения, следует ожидать уменьшения угловой скорости, компенсирующего увеличение расстояния. Когда руки и гири опять прижаты к туловищу, их расстояние от оси вращения снова уменьшается и угловая скорость увеличивается, компенсируя это уменьшение.

Можно утверждать, что момент количества движения сохраняется, если его определять как произведение массы, угловой скорости и квадрата среднего расстояния массы от оси вращения. Тогда закон сохранения момента количества движения, нарушения которого никто никогда не наблюдал, можно сформулировать так: суммарный момент количества движения замкнутой системы остается постоянным.

Я говорю «суммарный момент количества движения» поскольку угловая скорость, так же как линейная, может иметь разные направления. Различают направление вращения по и против часовой стрелки. Если смотреть на Землю со стороны Северного полюса с большой высоты будет казаться, что она вращается против часовой стрелки.

Если два одинаковых шара вращаются вокруг своей оси со скоростью 10 оборотов в секунду, но один по часовой стрелке, а другой — против, то суммарная угловая скорость такой системы равна нулю. Поскольку шары имеют одинаковую массу, форму и строение, суммарный момент количества движения системы тоже равен нулю. Шары могут столкнуться так, что вращение одного погасит вращение другого. После соударения оба шара не вращаются, и момент количества движения системы снова равен нулю.

Читать дальше
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать


Айзек Азимов читать все книги автора по порядку

Айзек Азимов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Нейтрино - призрачная частица атома отзывы


Отзывы читателей о книге Нейтрино - призрачная частица атома, автор: Айзек Азимов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
Большинство книг на сайте опубликовано легально на правах партнёрской программы ЛитРес. Если Ваша книга была опубликована с нарушениями авторских прав, пожалуйста, направьте Вашу жалобу на PGEgaHJlZj0ibWFpbHRvOmFidXNlQGxpYmtpbmcucnUiIHJlbD0ibm9mb2xsb3ciPmFidXNlQGxpYmtpbmcucnU8L2E+ или заполните форму обратной связи.
img img img img img