Айзек Азимов - Нейтрино - призрачная частица атома
- Название:Нейтрино - призрачная частица атома
- Автор:
- Жанр:
- Издательство:Атомиздат
- Год:1969
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Айзек Азимов - Нейтрино - призрачная частица атома краткое содержание
В книге известного популяризатора науки А. Азимова в живой и популярной форме изложены современные представления о самой неуловимой частице микромира — нейтрино. Азимов прослеживает цепь событий, приведших физиков к открытию нейтрино, рассказывает о том, как эту частицу научились регистрировать, о ее роли в эволюции Вселенной, о последних достижениях нейтринной физики — двухнейтринном эксперименте. Автор стремится раскрыть перед читателем современную физическую картину мира, но в то же время не подавить его массой сведений, столь обширных в этой области науки.
Книгой заинтересуются самые широкие круги читателей: школьники, преподаватели и те, кто следит за новейшими достижениями физики.
Нейтрино - призрачная частица атома - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Энергия превращается не только в работу, но и в другие формы энергии. Электрический ток вызывает магнетизм, в лампе накаливания — свет и тепло, в двигателе — кинетическую энергию. Химическая энергия, дающая возможность дереву сгореть, превращается во время этого процесса в тепло и свет, а химический взрыв заставляет предметы лететь и таким образом переходит в кинетическую энергию. Кинетическая энергия благодаря трению превращается в тепло, а если трение используют для зажигания спички, тепло преобразуется в свет. Когда заряжается аккумуляторная батарея, электрическая энергия переходит в химическую; когда она разряжается, происходит обратный процесс.
В этом отношении тепло занимает особое место. Любая другая форма энергии при определенных условиях полностью преобразуется в тепловую. Однако тепло не может превратиться в любую другую форму энергии полностью. Часть энергии всегда остается в виде тепла. Более того, если одна форма нетепловой энергии переходит в другую, это превращение никогда не происходит полностью: некоторая часть энергии всегда переходит в тепло. Следовательно, энергию удобно подразделять на тепловую и все другие формы, включая работу. Поэтому неудивительно, что тепло требует специального рассмотрения и имеет даже собственную единицу измерения. (Не надо забывать, что тепло было тщательно изучено еще до того, как его отнесли к формам энергии.) Единица тепла — калория. Это количество тепла, необходимое для того чтобы поднять температуру одного грамма воды от 14,5 °C до 15,5 °C.
Более распространенная единица энергии, которая чаще всего используется для других ее форм, составлена из грамма, сантиметра и секунды. Если выразить энергию как 1/2 mv 2 , то единица энергии будет иметь размерность г·см 2/сек 2. Для большего удобства физики договорились назвать эту единицу односложно, для чего было придумано слово эрг (от слова «энергия»). Эрг — малая единица энергии. Чтобы поднять 1 грамм вещества на короткое расстояние в 1 сантиметр, преодолевая земное притяжение, надо затратить 980,7 эрг.
Теперь можно задать один важный вопрос. Когда определенное количество какой-нибудь нетепловой энергии полностью превращается в тепловую, всегда ли выделяется одно и то же количество тепла? Всегда ли х эрг превращается в у калорий, т. е. сохраняется ли, другими словами, энергия?
Необходимые эксперименты провел в сороковых годах XIX века английский физик Джеймс Джоуль. Он пытался превратить энергию в тепло самыми разными способами, например: заставлял двигаться воду или ртуть с помощью колеса с лопастями, сжимал воздух, пропускал воду через узкие трубки, вращал проволочную катушку между полюсами магнита, пропускал через проволоку электрический ток. В каждом случае он измерял потраченную энергию и выделенное тепло. Даже во время своего медового месяца Джоуль не смог побороть искушения измерить температуру вверху и внизу водопада, чтобы узнать, сколько тепла выделяет энергия падающей воды. К 1847 году он установил, что данное количество нетепловой энергии любого вида всегда производит одинаковое количество тепла.
Впоследствии это было подтверждено несчетное число раз, и теперь мы можем сказать, что 41 800 000 эрг эквиваленты 1 кал тепла. Это соотношение называется механическим эквивалентом тепла. В честь Джоуля 10 000 000 эрг принято считать равными 1 джоулю. Следовательно, механический эквивалент тепла 1 калория равен 4,18 джоуля.
В то же самое десятилетие два немецких физика Юлиус Роберт Майер и Герман Людвиг фон Гельмгольц независимо друг от друга привели ряд аргументов в пользу сохранения энергии. Подкрепленные опытами Джоуля, эти аргументы стали в конце концов убедительными. Так был установлен закон сохранения энергии, который является, вероятно, самым фундаментальным и важным обобщением из всех, которые дала наука.
Подобно массе и в отличие от импульса энергия — скалярная величина. Она бывает больше или меньше, но нет положительной или отрицательной энергии.
Предположим, например, что два пушечных ядра одинаковой массы летят навстречу друг другу с одинаковой скоростью. Их импульсы равны и противоположны, так что общий импульс двух ядер равен нулю. Если ядра столкнутся неупруго, они сплющатся и упадут на землю. Но оба ядра обладали кинетической энергией, а она не может исчезнуть. Однако однажды столкнувшись, ядра больше не движутся. Что же случилось с кинетической энергией? Она превратилась в другую форму энергии — тепловую. В результате столкновения ядра так нагреваются, что могут частично расплавиться. Следовательно, правильнее говорить о полной энергии, а не о суммарной и закон сохранения энергии формулировать так: полная энергия замкнутой системы постоянна.
Закон всемирного тяготения
Я опять хочу подчеркнуть, что законы сохранения, которые были описаны, в действительности не «законы», а просто обобщения. Производя разнообразные измерения, ученые убеждались каждый раз, что импульс, момент количества движения, масса и энергия системы, которая кажется замкнутой, остаются постоянными при любых изменениях в системе. Тогда они сделали широкое обобщение, что данные этих измерений всегда остаются постоянными при всех условиях. Но слова «всегда» и «при всех условиях» — предательские слова. Знаем ли мы на самом деле, что происходит «всегда» и «при всех условиях»? Но даже если упорно продолжать верить в справедливость этого обобщения на Земле, будет ли верно оно для внеземных условий? Наши измерения «сохраняющихся» величин сделаны на Земле, в земных условиях. Не очень хорошо переходить от измерений к предположению о том, что происходит «всегда» и «при всех условиях на Земле. И совсем плохо предполагать, что слова всегда» и «везде» справедливы для всей Вселенной, условия в которой могут невероятно отличаться от земных.
Будет ли сохраняться энергия в условиях вакуума космического пространства? Сохраняется ли энергия при сверхвысоких температурах внутри звезд, температурах, которые нельзя воспроизвести в лаборатории?
В древности философы считали само собой разумеющимся, что «законы природы» не одни и те же во Вселенной: одни — для Земли, другие — для неба. Казалось, что для этого были все основания. На Земле тела падают вниз, а небесные тела движутся по неизменным орбитам и никогда не падают. На Земле тела меняются, разлагаются, умирают, а в небе нельзя заметить каких-либо изменений; Солнце такое же светлое и яркое, как и вчера и вообще на всей памяти человечества.
Однако в наше время собраны факты, которые подчеркивают единство законов природы. Первый сокрушительный удар был нанесен в 1687 году Ньютоном, опубликовавшим книгу о трех законах движения. Основываясь на них, он доказал, что падать яблоко с ветки на землю заставляет та же сила, которая удерживает Луну на орбите вокруг Земли. Падающие на Землю предметы и вращающиеся в небе тела подчиняются одному и тому же основному закону взаимного притяжения, или, выражаясь точнее, закону всемирного тяготения. Акцент в этой фразе надо сделать на слове «всемирное».
Читать дальшеИнтервал:
Закладка: