Томас Маклафлин - Обзор ядерных аварий с возникновением СЦР (LA-13638)
- Название:Обзор ядерных аварий с возникновением СЦР (LA-13638)
- Автор:
- Жанр:
- Издательство:Лос-Аламосская национальная лаборатория
- Год:2003
- Город:Лос-Аламос, Нью-Мексико
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Томас Маклафлин - Обзор ядерных аварий с возникновением СЦР (LA-13638) краткое содержание
Обсуждаются ядерные аварии с возникновением самоподдерживающейся цепной реакции (СЦР) и характеристики разгона на мгновенных нейтронах на критических сборках. Рассмотрено 60 аварий на различного типа оборудовании и установках. Приводятся детали, позволяющие читателю понять физическую картину, химические процессы во время аварии, а также предоставляется информация об административной обстановке на промежутке времени, предшествующем возникновению аварии, в тех случаях, когда она доступна. Приводится картина изменения мощности во времени, приводятся данные об энерговыделении, последствиях и причинах аварии. Для описания тех аварийных ситуаций, которые возникли на промышленных предприятиях, в настоящую версию были включены два новых раздела. В первом из них содержится анализ и выводы о физических и ядерно-физических свойствах систем, в которых происходила цепная реакция. Во втором обобщаются наблюдения и обсуждаются извлеченные уроки. Обсуждение случаев резкого превышения мощности крупных энергетических реакторов не включено в данный отчет.
Обзор ядерных аварий с возникновением СЦР (LA-13638) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Выводы
Риск аварий с возникновением СЦР не исчезнет, пока существуют значительные количества делящихся материалов. Однако в результате плановых экспериментов и прошлых аварий были накоплены значительные знания, позволяющие обеспечить высокую степень уверенности в том, что при соответствующей поддержке со стороны ответственных руководителей, разумных усилий специалистов по ядерной безопасности и рабочего персонала, а также при непрерывном строгом соблюдении кодекса фундаментальных принципов безопасности и руководств, вероятность аварий может поддерживаться на современном низком уровне или, возможно, даже уменьшиться в будущем. Это потребует непрерывного обучения будущего персонала на всех уровнях — представителей регулирующих органов, высшего руководства, непосредственных начальников, специалистов по критичности и операторов — на уроках прошлого с тем, чтобы подобные аварии не могли повториться.
Следующее положение, хотя оно было вплетено повсюду в предыдущий текст, заслуживает того, чтобы его повторить: «Во всех авариях господствующими были недостатки в конструкции, в управлении и в рабочих операциях. Именно на этих вопросах следует сосредоточиться для предотвращения аварий».
II. Аварии при экспериментах с реакторами и при критических экспериментах
В настоящем разделе выявляются ошибки, которых следует избегать при проведении экспериментов с реакторами и экспериментов по изучению критичности. Поскольку возникновение критичности при таких экспериментах ожидается заранее, то уроки, которые можно извлечь из данного раздела, не вносят непосредственного вклада в ту отрасль знания, которая решает проблемы безопасности в отношении критичности при технологической обработке материалов. Из 38 изученных аварий 5 произошли на таких установках, которые следует классифицировать как работающие реакторы (кипящий реактор, «Годива», «Дрэгон», SL-1 и канадский исследовательский экспериментальный реактор NRX), а 33 аварии произошли на критических установках, на которых исследовались свойства самих критических сборок.
Главное изменение в части II этой второй редакции, по сравнению с предыдущими редакциями, состоит в добавлении описаний шести аварий, случившихся в Российской Федерации. Четыре из них произошли с небольшими металлическими урановыми и плутониевыми сборками, две произошли на критических сборках с макетами активной зоны реактора.
Некоторые данные об авариях при экспериментах с реакторами и при критических экспериментах сведены в таблице 11. Там, где это является возможным и уместным, энергия деления при резком увеличении мощности разделяется на ту, которая была выделена в пике, и на ту, которая была выделена на плато зависимости выделенной энергии от времени. Для некоторых выбросов мощности почти все акты деления имели место на плато; другие выбросы мощности состояли лишь из единственного пика.




A. Системы растворов делящихся материалов
1. Лос-Аламосская национальная лаборатория, декабрь 1949 г
Реактор-бойлер; поглощающие стержни удалялись вручную; единичный всплеск мощности; незначительная доза облучения.
Эта авария произошла при испытании двух новых поглощающих стержней в реакторе, названном «бойлером» из-за своей схожести с этим аппаратом. Реактор представлял собой сферу из нержавеющей стали диаметром 12 дюймов (305 мм), содержащую 13,6 л водного раствора уранилнитрата с обогащением урана 88,7 %. В 1949 году в качестве отражателя в реакторе использовался толстый слой графита. Реактор имел биологическую защиту из бетона сверху и с боковых сторон. Стержни перемещались в каналах в графите.
Стержни были смонтированы, и оператор вынимал их вручную, проверяя время падения в активную зону. Испытание стержней поодиночке являлось безопасной процедурой, так как одного стержня в активной зоне было достаточно для поддержания подкритичности. После нескольких проверок каждого из стержней по отдельности были извлечены оба стержня, их подержали в поднятом положении 5 секунд, а затем одновременно сбросили в активную зону.
При извлечении обоих стержней реактивность превысила на 3 цента уровень критичности на мгновенных нейтронах, что соответствовало периоду разгона мощности 0,16 с. Вероятно, за этот интервал времени мощность достигла величины от 2 до 3 х 10 16делений в секунду и оставалась примерно на таком уровне в течение около полутора секунд. Всплеск мощности не был сразу обнаружен, потому что все приборы были выключены, за исключением термометра, предназначенного для прямых измерений, который показал повышение температуры на 25 °C, что соответствовало энерговыработке от 3 до 4 х 10 16делений.
Оператор, находящийся за защитой, получил дозу радиации, равную 2,5 рад. Механических повреждений реактора не было.
2. Завод в Ханфорде, шт. Вашингтон, 16 ноября 1951 г. 38 40
Сборка с плутониевым раствором; слишком быстрое извлечение кадмиевого стержня; единичный всплеск мощности; незначительные дозы облучения.
Критическая сборка, в которой произошел разгон мощности, содержала 1,15 кг плутония в форме нитрата плутония, находящегося внутри алюминиевой сферы без отражателя диаметром 50,8 см. Целью экспериментальной программы было определение критической массы плутония для емкостей различной геометрии и различных концентраций плутония в растворе. Всплеск мощности произошел при подходе к состоянию критичности, когда сфера была заполнена на 93 %, в результате удаления полого кадмиевого стержня СУЗ. Стержень выводился с пульта управления постепенно, шагами, причем промежуток времени между шагами оказался недостаточным. Энерговыход в результате всплеска мощности составил 8 х 10 16делений. Небольшое количество топлива оказалось выплеснутым через прокладки в верхней части критсборки. Поскольку до аварии система уплотнения удерживала около 18 литров воздуха над поверхностью топлива, давление в процессе аварии должно было намного превышать атмосферное.
Опубликованные данные предполагают, что скорость ввода реактивности в результате извлечения стержня СУЗ должна была составлять примерно 4,7 р/с, что соответствует (если использовать известные температуры и значения пустотных коэффициентов реактивности) выходу делений, в два раза превышающему наблюдавшееся значение. В данном случае, однако, действие аварийной системы было достаточно быстрым, так что сам кадмиевый стержень, скорее всего, тоже способствовал гашению цепной реакции. Небольшое уменьшение скорости ввода реактивности по сравнению с приведенной величиной удлинило бы время разгона и сделало бы его таким, что еще с большей вероятностью можно было бы предположить, что всплеск мощности был погашен падающим стержнем-поглотителем.
Читать дальшеИнтервал:
Закладка: