Яков Гегузин - Капля
- Название:Капля
- Автор:
- Жанр:
- Издательство:«НАУКА»
- Год:1973
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Яков Гегузин - Капля краткое содержание
Книга состоит из отдельных очерков о физических законах, управляющих поведением капли, об ученых, которым капля помогла решить ряд сложных и важных задач в различных областях науки.
Книга иллюстрирована кадрами скоростной киносъемки и будет интересна самому широкому кругу читателей.
Капля - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Щеточка из водяных капель, расширяющаяся по мере роста напряженности электрического поля
А теперь о частоте приседаний или, лучше, так: о времени τ , которое проходит между двумя приседаниями. Его можно определить, рассуждая следующим образом. Растущая со временем капля будет увеличивать свой размер до тех пор, пока давление, оказываемое ею на струю ( Р к ), не станет равным давлению струи на каплю ( Р с ). Если нам известны скорость υ и сечение s струи, мы легко можем определить величины Р к и Р с . Они равны отношению соответствующих сил F к и F с к сечению струи:
Р к = F к / s и Р с = F с / s .
Очевидно, F к = т к . g ,а F с = т с . ω , где g — ускорение силы тяжести, которой подвержена капля, т с — масса струи длиной h между наконечником и каплей, а ω — ускорение или, точнее, замедление, с которым движется струя. Так как у выхода из стеклянного наконечника струя имеет скорость υ , а в месте соприкосновения с набухшей каплей ее скорость обращается в нуль, то ω ≈ υ / τ
Считая, что средняя скорость струи υ cp = υ /2 , можно записать, что
т к = υ /2 . s ρτ , а т с = sh ρ .
Вот теперь, приравнивая Р к и Р с , получим:
τ ≈ (2 h / g) 1/2
В наших опытах h = 20 см и, следовательно, τ должно бы равняться —10 -1 сек. В действительности τ оказывается немного большим, видимо, из-за того, что набухшая капля не свободно падает, а стекает вдоль струи, испытывая при этом трение о нее. А вот следующее из формулы предсказание, что τ ~ h 1/2 , когда увеличение длины струи, к примеру, в 4 раза должно увеличить время между двумя приседаниями вдвое, — оправдывается.
Вторая кинограмма. Эта кинограмма отражает изменения, которые происходят с концом распадающейся струи, по мере того как возрастает напряженность электрического поля Е . Отчетливо видно, что на конце струи вместо приседающей капли формируется густая щеточка, фонтанчик мелких капель, разлетающихся в разные стороны. С ростом напряженности щеточка становится более широкой, и точка на струе, где начинается ее разветвление, приближается к нижнему электроду. Расстояние между этой точкой и электродом обозначим l — далее оно нам понадобится. Когда напряженность достигла ~ 2000 в/см, практически вся струя начиная от места выхода ее из стеклянного наконечника (он был немного выше нижнего электрода) превращалась в ветвистый фонтан из мелких капель.
Почему? Почему ранее, при небольшой напряженности поля, мелкие капли объединялись в крупную, а при большой напряженности они сочли для себя целесообразным дробиться на еще более мелкие и разлетаться во все стороны сверкающим фонтанчиком? Или, иными словами, почему в сильном электрическом поле капля на кончике струи утрачивает устойчивость и разрывается на множество мелких?
Разрыв капли происходит под влиянием электрического растягивающего давления Р е . Оно побеждает лапласовское, которое, сжимая каплю, стремится сохранить ее.
Электрическое давление, возникающее в электрическом поле, подобно тому, которое разрывает тяжелые атомные ядра, обладающие большим зарядом. Отличие лишь в том, что заряженное ядро находится в поле, которое создано его собственным зарядом, а дробящаяся водяная капля находится в поле, созданном и поддерживаемом внешним источником.
После сказанного легко оценить величину электрического давления. Имея в виду каплю радиуса R , несущую заряд q , можно определить силу, которая разрывает каплю,
В этой формуле все разумно: напряженность электрического поля, необходимая для разрыва струи, оказывается тем больше, чем меньше размер капли и чем больше величина поверхностного натяжения, сжимающего ее. Однако, чтобы эту формулу сопоставить с результатами опыта, необходимо учесть, что напряженность Е к отличается от Е 0 — напряженности между пластинами конденсатора. Так как вблизи капли, сидящей на струе, силовые линии поля сгущаются, Е к будет больше, чем Е 0 .
Расчетпоказывает, что Е к = Е 0 . Удобнее эту формулу переписать в виде:
Последняя формула естественно объясняет понижение точки, в которой начинается распад капель, с ростом напряженности :
l ≈ 1/ E o
Получается своеобразный высо ковольтный вольтметр. С его помощью можно определить напряженность, измерив расстояние l .
Вот теперь, пожалуй, опыт Рэлея — Френкеля понят, и обе кинограммы истолкованы.
Кто творит радугу?
Радугу творят водяные капли: в небе — дождинки, на поливаемом асфальте — капельки, брызги от водяной струи. Радугу могут сотворить и капли-росинки, которыми осенним утром покрыта низко скошенная трава.
Вначале поговорим о «геометрии» радуги, т. е. о форме и расположении разноцветных дуг, а затем — о «физике» радуги, о том, какие физические законы определяют ее форму и цвета.
«Геометрия радуги» в небе описана давным-давно. Обычно в небе видны две разноцветные концентрические дуги — одна яркая, а другая побледнее. Каждая дуга является честью окружности, центр которой лежит на прямой, проведенной через солнце и глаз наблюдателя. Эта прямая — своеобразная ось, и вокруг нее изогнута радуга. Глаз наблюдателя оказывается в вершине конусов, в основании которых — разноцветные дуги. Образующие этих конусов с осью соответственно составляют углы 42 и 51°. Солнце светит из-за спины наблюдателя, и, чем ниже оно опускается к горизонту, тем выше поднимается вершина радуги. В тот момент, когда солнце касается горизонта, можно увидеть полукруглую радугу — большей она никогда не бывает. Если же солнце поднимется над горизонтом бо лее чем на 42°, вершина яркой радуги уйдет за горизонт.
Читать дальшеИнтервал:
Закладка: