Яков Гегузин - Капля
- Название:Капля
- Автор:
- Жанр:
- Издательство:«НАУКА»
- Год:1973
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Яков Гегузин - Капля краткое содержание
Книга состоит из отдельных очерков о физических законах, управляющих поведением капли, об ученых, которым капля помогла решить ряд сложных и важных задач в различных областях науки.
Книга иллюстрирована кадрами скоростной киносъемки и будет интересна самому широкому кругу читателей.
Капля - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Теоретик сделал главное: предложил идею и определил условия, в которых проявляются наиболее существенные черты явления. После этого формула появилась без особого труда. Оказалось, что площадь круга, по которому соприкасаются сферические капли, равномерно увеличивается со временем: время увеличилось вдвое и площадь — вдвое, время — втрое и площадь — втрое.
Неизвестно, заботился ли Френкель лишь об удобствах теоретика, определяя черты «карикатуры», или думал и об экспериментаторе, но модель сливающихся сферических капель была экспериментаторами охотно взята «на вооружение». Они припекали друг к другу маленькие стеклянные бусинки, нагретые до высокой температуры. Подчеркнем слово «маленькие» — сферические бусинки имели диаметр не более долей миллиметра. С бусинками более крупными экспериментировать нельзя, так как они будут деформироваться под влиянием собственной тяжести, а этого модель Френкеля не предусматривает. Специально не подчеркивая этого, Френкель предполагал, что капли подвержены лишь силам, которые обусловлены наличием поверхностного натяжения, т. е. находятся в невесдмости.
Опыт ставился следующим образом: соприкасающиеся бусинки выдерживались при высокой температуре некоторое время, затем охлаждались. На охлажденных бусинках измерялась ширина контактного перешейка, а потом все повторялось сначала: нагревались, выдерживались, охлаждались, измерялись. В каждом таком цикле добывалась одна экспериментальная точка. По 5—10 точкам строилась зависимость; квадрата ширины контактного перешейка (эта величина пропорциональна площади контакта) от времени. Экспериментальные точки не совсем точно укладывались на прямую, но в общем, как и предсказывает формула Френкеля, прямая получалась.
Итак, как будто круг замкнулся. Экспериментатор подтвердил правоту теоретика, узнал в «карикатуре» истинную натуру. И все же, может быть, он увидел не все? Возможно, согласие теории и эксперимента иллюзорно, оно .не точное, а, как говорят, «в общих чертах»? Теоретику, определившему задачу, те допущения, которые он делает, решая ее, «карикатура» простительна, а от экспериментатора можно потребовать подлинную фотографию с деталями,. которые не обязательны в карикатуре.
Опыты с микроскопическими бусинками — не лучшим образом поставленные опыты. Во-первых, бусинки малы, и поэтому некоторое изменение их формы в процессе взаимного слияния обнаружить непросто. Во-вторых, они не абсолютно сферические. В-третьих, пусть не много, но сила тяжести все же искажает форму бусинок, размягченных температурой. В-четвертых, 5—10 точек, рассеянных вокруг прямой,— не стопроцентная гарантия выполнимости предсказаний теоретика.
Теперь уместно перейти к фильму о слиянии двух капель. Он назван «Слияние вязких сфер в невесомости». Чтобы избавиться от перечисленных упреков в неточности, опыт, который должен был быть заснят на кинопленку, мы поставили так.
Два одинаковых по весу бесформенных кусочка вязкого вещества, допустим смолы, следует поместить в жидкость, плотность которой в точности совпадает с плотностью смолы. Вскоре, если температура жидкости достаточна, бесформенные кусочки превратятся в идеальные сферы, как это было в опыте Плато. В этом случае не следует бояться, что сила тяжести исказит форму сфер, поскольку они находятся в невесомости. Это дает экспериментатору возможность изучать не микроскопические бусинки, а крупные сферы. Снимая этот фильм, мы экспериментировали со сферами диаметром 5 см. Разобщенные сферы . приводились в контакт, и все происходящее с ними снималось кинокамерой. Две пятисантиметровые сферы сливались в одну приблизительно за 1 мин. Так как скорость съемки 24 кадра в секунду, то весь процесс оказывался запечатленным на огромном количестве кадров — более тысячи. Для игрового фильма это число кадров ничтожно, а для экспериментатора 1000 кадров — это 1000 экспериментальных точек! По этим точкам можно построить надежную кривую, отражающую зависимость изучаемой характеристики от времени.
Слияние капель эпоксидной смолы в невесомости
Наблюдая за слиянием сфер в невесомости с помощью кинокамеры, можно получить истинный «портрет» явления и оценить интуицию и зоркость теоретика.
Кадры фильма свидетельствуют о том, что в основном Френкель был прав, но только в основном. Действительно, быстрее иных участков поверхности движется вогнутая область контактного перешейка, но движется не только она. Оказывается, что, стремясь поскорее слиться, сферы меняют свою форму и рядом с перешейком. Поэтому центры сфер сближаются быстрее, чем это следует из расчетов Френкеля. Поэтому и площадь контакта со временем изменяется по очень сложному закону, а закон, выведенный Френкелем, проглядывает сквозь последовательность огромного числа точек лишь как нечто усредненное, справедливое приближенно. На киноленте, кроме того, были запечатлены и более далекие стадии слияния сферических капель, которые описать с помощью формул чрезвычайно трудно. Начинает перемещаться вещество во всем объеме сферы, в каждой точке с разной скоростью и в разных направлениях, и оказывается практически невозможным усмотреть черты, пригодные для создания похожей «карикатуры».
Бот уже четверть века идея Френкеля определяет деятельность всех тех, кто занимается изучением процесса спекания. Кинокамера не отменила исследование 26-летней давности, а лишь указала на детали, от которых освободила сложное явление интуиция теоретика.
Статья Эйнштейна о лорде Кельвине
В конце 1924 года в немецком журнале «Naturwissenschaften» появилась статья Эйнштейна «К столетию со дня рождения лорда Кельвина». Эйнштейн счел своим долгом почтить память лорда Кельвина-Томсона — выдающегося английского физика прошлого века. Статья начинается с характеристики Кельвина — «...один из наиболее сильных и плодотворных мыслителей XIX столетия...», «...основатель теоретической школы, из которой вышел гениальный теоретик нового времени К .Максвелл...», «...одаренный богатой фантазией, редким умением применять математический аппарат и проникновенным умом...», «.. .не многие ученые были столь же плодотворны». А затем — о конкретных заслугах и достижениях. «Наиболее существенный вклад Томсона в развитие физики — это основание термодинамики...»; «В возрасте 23 лет он вводит одно из фундаментальнейших понятий современной физики — абсолютную температуру...»; «Обилие результатов... в области учения о теплоте, гидродинамики, учения об электричестве, навигации, физической географии и измерительной техники...»
Читать дальшеИнтервал:
Закладка: