Яков Гегузин - Живой кристалл
- Название:Живой кристалл
- Автор:
- Жанр:
- Издательство:«Наука»
- Год:1981
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Яков Гегузин - Живой кристалл краткое содержание
Книга содержит научно-популярное изложение современных представлений о физических явлениях и процессах, которые происходят в реальных кристаллах и определяют их физические свойства и эксплуатационные характеристики. Рассказано о движении атомов, составляющих решетку, о характеристиках и свойствах различных дефектов строения реальных кристаллов, о том, как кристалл хранит воспоминания о своем прошлом, повлиявшем на его структуру. Используемые в книге формулы вполне доступны овладевшему лишь начальными сведениями из алгебры.
Книга рассчитана на всех лиц, интересующихся современным естествознанием.
Живой кристалл - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Вот теперь очерк можно закончить.
РАЗМНОЖЕНИЕ И ГИБЕЛЬ ДИСЛОКАЦИЙ
Ансамблю дислокаций в кристалле свойственны эти два непременных признака жизни любой популяции: и размножение, и гибель составляющих ее индивидуумов. В книге о живом кристалле нельзя промолчать о том, как размножаются и как исчезают дислокации.
Вначале о размножении. О том, что оно должно происходить, теоретики обязаны были подумать сразу же, как только сочли, что деформация кристалла происходит вследствие движения дислокаций. Их логика должна была быть простой и прямолинейной. Кристалл, как известно, способен значительно деформироваться, и в течение длительного времени. Для этого наличных в нем дислокаций, которые, перемещаясь, «выходят из игры», может оказаться недостаточно, и, следовательно, необходимо появление новых. В том, что дело обстоит именно так, легко убедиться, если воспользоваться уже встречавшейся нам формулой, которая определяет связь между величиной деформации ε, плотностью подвижных дислокаций ρ 0и величиной перемещения каждой из них l i .Если мы сочтем, что все дислокации «выйдут из игры», пройдя максимальный путь l max , то деформация ,согласно нашей формуле, окажется следующей:
ε max= ρ 0 bl max.
Опыт свидетельствует о том, что в реальных кристаллических телах величина l max оказывается небольшой, приблизительно равной 10 -3—10 -2см; пройдя такой путь, дислокации «выходят из игры» по разным причинам: либо достигают границы зерна, либо выходят за пределы образца, либо, встретив стопор, теряют подвижность, а следовательно, и способность вносить вклад в формирование кристалла. При ρ 0≈ 10 7см -2и b ≈ 3• 10 -8см оказывается, что ε max= 10 -4- 10 -3. А в действительности, благодаря движению дислокаций, кристалл может деформироваться в несравненно большей степени. Это и означает, что в процессе деформирования в нем, видимо, должны рождаться новые подвижные дислокации.
Когда речь идет о размножении живых организмов, имеется в виду увеличение числа особей. В случае дислокаций имеется в виду нечто иное, а именно увеличение их плотности. А так как плотность дислокаций ρ 0= £/V , где £ — суммарная протяженность дислокационных линий в объеме V , то под размножением следует понимать увеличение £. Итак, оказывается, что размножение дислокации есть попросту ее удлинение.
Вот теперь можно поговорить о конкретном механизме размножения. Об одном из многих. В литературе он называется механизмом Франка — Рида.
Практически все необходимое для того, чтобы понять этот механизм, уже было рассказано в очерке о «росе», тормозящей движение дислокаций. После того, как участок дислокационной линии, заторможенный двумя неподвижными «росинками»-стопорами, напряжением σ > σ maxбудет «продавлен» сквозь стопоры, в плоскости скольжения он превратится в замкнутый круг и в участок дислокационной линии между стопорами. Этот участок так же может превращаться в круг, повторив предыдущий цикл. Он окажется очагом размножения дислокационной линии, так как ее суммарная длина в этом процессе возрастает. Разумеется, до тех пор, пока действует напряжение, способное «продавить» заторможенный участок дислокационной линии сквозь стопоры. Рисунок это отчетливо иллюстрирует.
В кристалле могут быть и одиночные замкнутые петли, и полупетли, которые обоими концами выходят на поверхность кристалла. Их расширение или сжатие также приводит к размножению или гибели дислокаций.
Коротко о механизмах «гибели» дислокаций. Один из механизмов может быть обратным тому, который приводил к размножению. Действительно, если перестать дуть в трубку, на торце которой расположен мыльный пузырь, он через трубку выдавит из себя газ и «схлопнется». Подобно этому «схлопнется» и замкнутая дислокационная линия («петля»), если внешние напряжения перестанут ее растягивать. То же относится и к «полу-петле», которая не замкнута на себе, а выходит на поверхность кристалла.
Описанным механизмом дислокационная линия гибнет медленно, обреченно. Есть, однако, и иные механизмы, при которых длина дислокационных линий сокращается скачком. Так произойдет, если в одной плоскости скольжения навстречу друг другу движутся две линии, каждая из которых ограничивает недостроенную плоскость над и под плоскостью скольжения. При встрече линий эти полуплоскости, дополнив друг друга, достроются, и из двух полуплоскостей образуется одна здоровая плоскость. Были две дислокационные линии и исчезли! И, наконец, совсем простой и очевидный механизм: движущиеся в кристалле дислокационные линии могут выйти на его поверхность и, таким образом, перестать существовать в объеме!
В этом очерке слова «размножение» и «гибель» я употреблял в прямом, не искаженном смысле: «размножение» — значит увеличилась мера, «гибель» — значит было и исчезло!
ЗВУЧАНИЕ КРИСТАЛЛА
Летом 1924 г. академик Абрам Федорович Иоффе получил письмо из Лейдена от своего друга — выдающегося физика-теоретика Пауля Эренфеста. В этом письме сообщалось, что Пауль Эренфест собирается приехать к Иоффе в гости где-то в августе — сентябре. В конце письма — совсем неожиданная просьба: рафинированный физик-теоретик, тончайший ценитель формальной строгости теоретических построений новой физики просит организовать ему возможность принять участие в не очень сложной экспериментальной работе. Что-нибудь с кристаллами.
Я не могу толково объяснить читателю, чем эта просьба была вызвана. Быть может, обычная «охота к перемене мест», желание увидеть любимую науку с иной позиции, быть может, попытка поиска иного поприща: Эренфест был болезненно самокритичен и очень скептически относился к своим достижениям в теоретической физике. Так или иначе, но в августе — сентябре 1924 г. Иоффе и Эренфест «в четыре руки» занимались исследованиями пластического деформирования монокристаллов цинка. Они заметили, что деформирование монокристаллов осуществляется скачкообразно и что скачки сопровождаются потрескиванием. Выражаясь научно, скажем так: пластическое деформирование сопровождается акустической эмиссией.
Читать дальшеИнтервал:
Закладка: