Марио Бертолотти - История лазера

Тут можно читать онлайн Марио Бертолотти - История лазера - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Издательский Дом «Интеллект», год 2011. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    История лазера
  • Автор:
  • Жанр:
  • Издательство:
    Издательский Дом «Интеллект»
  • Год:
    2011
  • Город:
    Долгопрудный
  • ISBN:
    978-5-91559-097-6
  • Рейтинг:
    3.82/5. Голосов: 111
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Марио Бертолотти - История лазера краткое содержание

История лазера - описание и краткое содержание, автор Марио Бертолотти, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга, которую Вы взяли в руки — редкий сплав добротного изложения основ современной физики и ее истории. История науки предстает здесь в неразрывной связи драмы идей в познании природы и судеб конкретных людей. Все эти выдающиеся исследователи были захвачены в круговорот жестокой истории XX века, которой в книге уделено немало страниц.

Автору удалось совместить рассказы о жизненном пути замечательных личностей с пристальным, шаг за шагом, анализом гипотез, теории и эксперимента.

Для широкого круга читателей, интересующихся современной физикой.

История лазера - читать онлайн бесплатно полную версию (весь текст целиком)

История лазера - читать книгу онлайн бесплатно, автор Марио Бертолотти
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Причина, почему ученые считали, что явления, связанные с вынужденным излучением, не дают существенных экспериментальных эффектов, заключается в тех следствиях, которые получаются при использовании закона Максвелла-Больцмана (выведенного в конце 19 столетия), который устанавливает вероятность нахождения при равновесии системы, обладающей определенной энергией. Этот закон, используемый в нашем случае для набора атомов, находящихся в термическом равновесии, в основном или в возбужденном состоянии, утверждает, что число атомов в возбужденном состоянии всегда много меньше числа атомов, находящихся в основном состоянии. В природе все физические системы находятся в тепловом равновесии или очень мало отличаются от него и быстро в него возвращаются. Поэтому в случае атомов, следует ожидать, что число возбужденных атомов всегда будет малым по сравнению с атомами, находящимися в основном состоянии. Тем самым разумно полагать, что эффект вынужденного излучения, который требует наличия возбужденных атомов, будет очень мал.

Позднее, в 1940 г., российский ученый В. А. Фабрикант в своей докторской диссертации показал, что если число молекул в возбужденном состоянии могло быть больше, чем число молекул в основном состоянии, то могло бы быть усиление излучения. Однако эта диссертация не была опубликована и, кажется, не имела последствий даже в России. Его предположение стало известным только тогда, когда после изобретения мазера Фабрикант получил российский патент.

В конце концов в 1947 г. У. Лэмб (г. р. 1913) и Р. Ризерфорд (г. р. 1912) захотели проверить точность предсказания Поля Дирака об энергетических уровнях и спектральных линиях водорода. Предсказание Дирака утверждало, что атом водорода имеет два возможных состояния с равными энергиями. В знаменитом эксперименте, сделанном при изучении разряда в водороде, эти исследователи обнаружили, что имеется маленькое различие между этими энергетическими уровнями. Этот «лэмбовский сдвиг» показал, что нужна ревизия теории взаимодействия электрона с электромагнитным излучением. За этот результат Лэмб в 1955 г. получил Нобелевскую премию по физике, которую он разделил с Поликарпом Куршем. В приложении к своей работе, опубликованной в 1950 г., Лэмб и Ризерфорд, обсуждая результаты, указали, что в их эксперименте могли быть осуществлены условия достижения инверсной населенности (т.е. больше возбужденных атомов, чем атомов, находящихся в основном состоянии). Однако они заключили, что их расчеты были слишком оптимистичны, и они не предприняли усилий для дальнейших проверок. Позднее Лэмб писал, что в то время концепция отрицательного поглощения и ранние исследования были новыми для них и что в любом случае их интересы были принципиально устремлены на изучение тех вещей, которые принесли ему Нобелевскую премию. По этой причине они не исследовали тщательно аспекты проблемы, связанной с вынужденным излучением.

ГЛАВА 7

МИКРОВОЛНЫ

Мы теперь возвращаемся к концу 19 столетия, во времена сразу же после публикации (1873 г.) знаменитой работы Treatise on Electricity and Magnetism Максвелла.

Несмотря на прогресс, сделанный Максвеллом и его первыми последователями в теории электромагнитных колебаний, связь между классической электродинамикой и теорией света не была найдена, кроме интуитивной идеи Максвелла, что электромагнитные волны и световые волны имеют одну природу. Ирландский физик Джордж Френсис Фитцджеральд (1851 — 1901) заложил первый камень в 1882 г., указав, что если унификация, указанная Максвеллом, правильна, то должна быть возможность генерировать излучаемую энергию чисто электрическими способами. Он утверждал: «Представляется высоко вероятным, что энергия переменных токов частично излучается в пространство и, тем самым, теряется для нас», обращая внимание только на отрицательную сторону явления, и описывал методы, с помощью которых можно было бы получить излучаемую энергию. Однако он замечал, что трудность лежит в обнаружении таких волн, когда они будут получены, поскольку подходящих детекторов еще не существовало.

Экспериментальное открытие электромагнитных волн

Параллельно с теоретическими изучениями уравнений Максвелла проводились экспериментальные исследования по генерации электрических колебаний, получаемых при разряде обычного конденсатора в электрической цепи, и выявляемые как осциллирующий ток в этой цепи. С 1847 г. Герман фон Гельмгольц доказал, что в некоторых случаях разряд конденсатора должен носить колебательный характер. Вильям Томсон в 1853 г. дал математическую формулу, устанавливающую, при каких параметрах компонентов цепи в ней получаются колебания.

Работая с колебательными цепями такого вида, Генрих Герц, молодой и тогда неизвестный немец, добился успеха в генерировании и обнаружении электромагнитных волн.

Генрих Герц (1857—1894) родился в Гамбурге. Он был сыном прокурора, ставшего позднее сенатором. Будучи блестящим студентом, он в равной степени преуспевал и в гуманитарных дисциплинах, и в науках. Также он показал большие способности в проектировании и создании научной аппаратуры. Предполагалось, что молодой Герц последует традициям семьи в области права, но с десяти лет он стал интересоваться естественными науками и после обучения в ряде школ решил изучать инженерное дело в Дрезденском политехникуме в 1876 г. Когда ему исполнилось 20, он был призван в армию. После службы он решил закончить свое инженерное обучение в Мюнхене, но вскоре оставил инженерное поприще ради физики. В 1878 г. он поступил в Берлинский университет для работы под руководством Гельмгольца и Кирхгофа и в 1880 г. получил докторскую степень.

Герман фон Гельмгольц переехал в Берлин в 1870 г. из Гейдельберга, сменив кафедру физиологии на кафедру физики. В течение многих лет Гельмгольц интересовался физическими свойствами организмов и биологическими процессами, в частности процессами ощущений. Эти изучения убедили его в том, что полное описание процессов, касающихся нервной системы, требует понимания обмена энергией в живых телах, и важную роль играет термодинамика и электричество. Здесь уже были важные достижения, включающие закон сохранения энергии. Когда он приехал в Берлин, то начал серию исследований в области электричества, и Герц, который появился в 1878 г., принял участия в этом деле. Ему посчастливилось обратить на себя внимание Гельмгольца, который, после получения Герцем ученой степени, назначил его своим ассистентом. В 1883 г. Герц стал по рекомендации Кирхгофа приват-доцентом Киле, а в 1885 г. стал профессором физики в Карлсруе. Для этого университета требовался кто-нибудь, кто мог бы преподавать электрические технологии. В то время последние успехи в передаче энергии, электрический свет и другие применения электричества сделали электричество принципиальной технологией. Работы Герца, уже сделанные в этой области, а также поддержка Гельмгольцем помогли ему получить это место. Герц скончался очень молодым от хронического заражения крови в тот же год, в который скончался его покровитель Гельмгольц.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Марио Бертолотти читать все книги автора по порядку

Марио Бертолотти - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




История лазера отзывы


Отзывы читателей о книге История лазера, автор: Марио Бертолотти. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x