Борис Шустов - Астероидно-кометная опасность: вчера, сегодня, завтра

Тут можно читать онлайн Борис Шустов - Астероидно-кометная опасность: вчера, сегодня, завтра - бесплатно ознакомительный отрывок. Жанр: sci-phys, издательство Физматлит, год 2010. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Астероидно-кометная опасность: вчера, сегодня, завтра
  • Автор:
  • Жанр:
  • Издательство:
    Физматлит
  • Год:
    2010
  • Город:
    Москва
  • ISBN:
    978-5-9221-1241-3
  • Рейтинг:
    4.5/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Борис Шустов - Астероидно-кометная опасность: вчера, сегодня, завтра краткое содержание

Астероидно-кометная опасность: вчера, сегодня, завтра - описание и краткое содержание, автор Борис Шустов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Проблема астероидно-кометной опасности, т. е. угрозы столкновения Земли с малыми телами Солнечной системы, осознается в наши дни как комплексная глобальная проблема, стоящая перед человечеством. В этой коллективной монографии впервые обобщены данные по всем аспектам проблемы. Рассмотрены современные представления о свойствах малых тел Солнечной системы и эволюции их ансамбля, проблемы обнаружения и мониторинга малых тел. Обсуждаются вопросы оценки уровня угрозы и возможных последствий падения тел на Землю, способы защиты и уменьшения ущерба, а также пути развития внутрироссийского и международного сотрудничества по этой глобальной проблеме.

Книга рассчитана на широкий круг читателей. Научные работники, преподаватели, аспиранты и студенты различных специальностей, включая, прежде всего, астрономию, физику, науки о Земле, технические специалисты из сферы космической деятельности и, конечно, читатели, интересующиеся наукой, найдут для себя много интересного.

Астероидно-кометная опасность: вчера, сегодня, завтра - читать онлайн бесплатно ознакомительный отрывок

Астероидно-кометная опасность: вчера, сегодня, завтра - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Борис Шустов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Метод Монте-Карло, или метод статистических испытаний, в применении к данной задаче означает прямое использование вероятностной интерпретации метода наименьших квадратов. Поскольку процесс уточнения орбиты по МНК доставляет, как принято говорить, наиболее вероятное решение, окруженное областью других возможных решений, то можно выбрать в этой области случайным образом большое число виртуальных астероидов и следить со всей возможной точностью за их движением в течение некоторого времени, пока они не столкнутся с Землей или не пролетят мимо нее. Тогда отношение числа столкнувшихся виртуальных астероидов к их общему количеству можно рассматривать как вероятность столкновения с Землей астероида, орбита которого доподлинно неизвестна. Этот метод замечателен своей простотой, универсальной применимостью и правильным учетом нелинейности задачи. При его практическом использовании важно учитывать корреляционные зависимости между разыгрываемыми значениями параметров орбиты, но это реализуется достаточно просто [Железнов, 2009]. К сожалению, метод является чрезвычайно трудоемким. Действительно, чем менее вероятное событие требуется оценить, тем большее количество начальных условий движения следует испытать. Пусть, например, при испытании 10 6случайно выбранных начальных условий в пяти случаях было зафиксировано столкновение с Землей. Тогда можно утверждать, что вероятность столкновения близка к 0,000005. Но если проведена только тысяча испытаний, которые не дали ни одного попадания, тогда можно лишь сказать, что вероятность столкновения, по-видимому, меньше 0,001. Поскольку на практике приходится искать опасные сближения с Землей на интервалах в несколько десятков лет и вероятность столкновения при этом имеет, как правило, порядок 10 -4и менее, то требуется несколько дней работы компьютера для получения надежного результата в отношении только одного астероида [Milani et al., 2000].

Метод Монте-Карло основывается на выборе случайных точек во всем шестимерном пространстве возможных начальных условий и на их последующем испытании. Имеется также возможность выбора точек в каком-нибудь подпространстве, относительно которого можно предполагать, что берущие в нем начало решения достаточно хорошо отражают поведение решений во всей доверительной области. В качестве такого подпространства можно, например, использовать линию вариации, вдоль которой номинальное решение определяется с наибольшей погрешностью. В доверительном эллипсоиде линия вариации совпадает с направлением наиболее вытянутой оси, как правило, большой полуоси его орбиты. В методе линии вариации виртуальные астероиды берутся со значениями пяти элементов, соответствующими номинальному решению, в то время как шестой элемент (среднее движение или большая полуось) варьируется с постоянным шагом в пределах ±3σ (или в иных пределах). Как и в методе Монте-Карло, движение виртуальных астероидов прослеживается на всем исследуемом интервале, в особенности при их сближениях с Землей. Поскольку при этом точки пересечения виртуальных астероидов с плоскостью цели представляют наборы, зависящие только от одного параметра, то достаточно просто (путем интерполяции или методом Ньютона нахождения корней функции) определяются значения среднего движения (большой полуоси), при которых реализуется максимальное сближение виртуального астероида с Землей.

Хотя этот метод является эффективным средством анализа сближений, нельзя быть уверенным, что при этом будут найдены все возможные столкновения, например те, которые соответствуют точкам доверительного эллипсоида, расположенным далеко от линии вариации. Соответствующие им точки на плоскости цели, если имеет место сильно выраженная нелинейность задачи, могут оказаться на значительном удалении от точек, отвечающих линии вариации, и часть из них может при этом вести к столкновениям. Метод Монте-Карло должен, в принципе, обнаруживать подобные случаи. Поэтому оба метода должны дополнять друг друга и использоваться для взаимного контроля.

7.6. Потоки виртуальных астероидов, следующие различными динамическими путями

Обратимся теперь к рассмотрению особенностей, которые связаны с нелинейными эффектами. Если все возможные сближения виртуальных астероидов с Землей на исследуемом интервале упорядочить по времени, то можно видеть, что они группируются около нескольких эпох, когда Земля оказывается вблизи узла номинальной орбиты астероида на эклиптике. По аналогии с метеороидами, встречающимися с Землей, такие наборы виртуальных астероидов можно назвать потоками. Очень часто поток можно подразделить на отдельные струи, охватывающие подмножества виртуальных астероидов на динамически различных путях. Например, один поток может включать несколько струй, в которых виртуальные астероиды совершили различное число оборотов вокруг Солнца за время, истекшее с момента t 0. Аналогичное подразделение потока на струи может возникнуть в результате его тесного сближения с Землей, когда часть виртуальных астероидов под влиянием возмущений со стороны последней оказывается на орбитах, имеющих те или иные соизмеримости с Землей. В итоге, спустя определенное целое число лет, Земля может встретиться вблизи узла номинальной орбиты астероида уже с несколькими различными струями виртуальных астероидов. На плоскости цели отдельные струи обнаруживаются в виде чрезвычайно вытянутых цепочек виртуальных астероидов, располагающихся внутри доверительной области отдельной струи, ширина которой во много раз меньше ее длины.

Поток виртуальных астероидов в январе 2046 г., соответствующих орбите астероида 1998 OX 4, подразделяется на три струи. Одна из струй пересекает Землю, ввиду чего возможно столкновение. Некоторые струи могут обнаруживать поведение, отличное от только что описанного. Например, при изменении среднего движения вдоль линии вариации точки пересечения соответствующих виртуальных астероидов с плоскостью цели сначала приближаются к линии минимального расстояния между Землей и астероидом, но затем движение прекращается и сменяется на обратное. Такое поведение может быть названо прерванным возвращением. Оно возникает в результате предшествующих тесных сближений с Землей. Примером прерванного возвращения может служить струя потока виртуальных астероидов в январе 2046 г., соответствующих орбите астероида 1998 OX 4[Milani et al., 2002].

Остановимся на некоторых особенностях, связанных с подсчетом вероятности столкновения в случае нелинейности задачи. Как мы видели, для таких случаев характерно вытягивание области пересечения виртуальных астероидов с плоскостью цели в очень узкую полосу, длина которой в тысячи раз превосходит ширину. Точка, соответствующая номинальному решению, может отстоять на очень большое расстояние от Земли. При этом из-за нелинейности точность определения минимального расстояния полосы от Земли оказывается невысокой, что недопустимо, если само расстояние составляет, согласно вычислениям, всего лишь несколько земных радиусов. В таких случаях рекомендуется использовать итеративную процедуру, которая сводится к поиску поправок к номинальному решению, приводящих к более тесному сближению соответствующего виртуального астероида с Землей [Milani et al., 2002]. Процесс повторяют до тех пор, пока минимальное расстояние не перестанет изменяться.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Борис Шустов читать все книги автора по порядку

Борис Шустов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Астероидно-кометная опасность: вчера, сегодня, завтра отзывы


Отзывы читателей о книге Астероидно-кометная опасность: вчера, сегодня, завтра, автор: Борис Шустов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x