Борис Шустов - Астероидно-кометная опасность: вчера, сегодня, завтра
- Название:Астероидно-кометная опасность: вчера, сегодня, завтра
- Автор:
- Жанр:
- Издательство:Физматлит
- Год:2010
- Город:Москва
- ISBN:978-5-9221-1241-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Борис Шустов - Астероидно-кометная опасность: вчера, сегодня, завтра краткое содержание
Проблема астероидно-кометной опасности, т. е. угрозы столкновения Земли с малыми телами Солнечной системы, осознается в наши дни как комплексная глобальная проблема, стоящая перед человечеством. В этой коллективной монографии впервые обобщены данные по всем аспектам проблемы. Рассмотрены современные представления о свойствах малых тел Солнечной системы и эволюции их ансамбля, проблемы обнаружения и мониторинга малых тел. Обсуждаются вопросы оценки уровня угрозы и возможных последствий падения тел на Землю, способы защиты и уменьшения ущерба, а также пути развития внутрироссийского и международного сотрудничества по этой глобальной проблеме.
Книга рассчитана на широкий круг читателей. Научные работники, преподаватели, аспиранты и студенты различных специальностей, включая, прежде всего, астрономию, физику, науки о Земле, технические специалисты из сферы космической деятельности и, конечно, читатели, интересующиеся наукой, найдут для себя много интересного.
Астероидно-кометная опасность: вчера, сегодня, завтра - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Увеличение альбедо за счет формирования облаков с каплями и с льдинками приводит к снижению температуры поверхности суши Земли, океана и нижних слоев атмосферы. Это уменьшает конвекцию в нижних слоях. С другой стороны, парниковый эффект увеличивает температуру. Поэтому даже знак эффекта до сих пор не ясен. Процессы инжекции воды в атмосферу и последствия этого требуют дальнейшего изучения.
Ударные волны, образующиеся при пролете астероида и/или в результате расширения послеударного плюма и распространяющиеся со скоростями > 2 км/с, нагревают атмосферу до нескольких тысяч градусов, что способствует образованию токсичных окислов азота (NO, NO 2, HNO 3) [Prinn and Fegley, 1987; Zahnle, 1990] и приводит к разрушению озонового слоя Земли [Turco, 1981]. Пожары, возникающие под действием излучения плюма или в результате возвращения в атмосферу высокоскоростных выбросов, заполняют нижнюю атмосферу дымом и токсичными газами. При ударах в осадочные породы (например, известняки и доломиты) в атмосферу выбрасывается огромное количество углекислого газа (результат дегазации кальцита) и серы. Если первый, являясь парниковым газом, может привести к существенному потеплению, то соединения серы, наоборот, приводят к уменьшению температуры поверхности. Суммарный эффект определяется массовым соотношением между этими химическими соединениями и их способностью оставаться в атмосфере длительное время (см. раздел 8.6.2).
Подъем пыли в пустынных районах. Существует еще один механизм выброса пыли в атмосферу — эрозия высокоскоростными ветрами, созданными ударной волной, усиленная вследствие так называемого «эффекта теплого слоя». Эта эрозия, по-видимому, наиболее интенсивна при «взрывах» комет и астероидов над полупустынными районами и песчаными пустынями, покрывающими значительную часть поверхности Земли. Теплый слой — это слой нагретого воздуха над поверхностью Земли, который может образовываться за счет нагрева поверхности излучением, возникшим при ударе. Низкий коэффициент теплопроводности песчаного грунта способствует быстрому повышению температуры частиц поверхностных слоев грунта. Естественно, что нагревается также воздух между песчаными частицами и над ними. Взаимодействие ударной волны с теплым слоем приводит к образованию предвестника перед фронтом волны и глобальной перестройке всего течения.
Эффект теплого слоя был обнаружен в середине 1950-х гг. при ядерных испытаниях и в специальных моделирующих опытах [Садовский, Адушкин, 1988]. В дальнейшем этот эффект изучался теоретически, оценками и численными расчетами, а также экспериментальными лабораторными исследованиями [Таганов, 1960; Немчинов и др., 1987, 1989; Артемьев и др., 1987, 1988, 1989; Бергельсон и др., 1987, 1989]. Он был исследован также в работах [Shreffler and Christian, 1954; Mirels, 1988; Reichenbach and Kuhl, 1988]. Взаимодействие ударной волны с теплым слоем приводит к возникновению вихревой структуры перед основной ударной волной. Это видно из рис. 8.10, где представлены результаты расчета развития взрывной волны для тела диаметром 200 м.


Рис. 8.10. ( а ) Распределение изохор в атмосфере после вертикального падения ледяного тела диаметром 200 м и скоростью 50 км/с в момент времени t = 1 с. ( б ) Положения начальных маркеров теплого слоя в тот же момент времени
На рис. 8.10 а показана форма ударной волны. Видно, как перед фронтом возникает предвестник. На рис. 8.10 б для того же момента времени приведены положения маркеров, предварительно размещенных в теплом слое в начальный момент времени. Вихревое течение внутри предвестника приводит к отрыву вещества теплого слоя от поверхности Земли. При этом нагретый газ захватывает частицы пыли, взвешенные в воздухе, и может поднять их на большую высоту.
Размеры предвестника и вихря намного больше толщины теплого слоя и оказываются порядка длины пути, пройденного ударной волной по теплому слою. Более того, в плоском случае при постоянной скорости поршня, генерирующего волну, задача автомодельна, и размер предвестника со временем неограниченно растет и, в конце концов, его длина и высота намного превосходят толщину теплого слоя и последняя перестает играть роль. Таким образом, очень малое возмущение может вызвать глобальную перестройку течения.
Были проведены лабораторные эксперименты по взаимодействию ударной волны с теплым слоем над запыленной поверхностью. Сферическая волна создавалась лазерным импульсом, метеорный след моделировался электровзрывом тонкой проволочки. Нагрев покрытой тонкой графитовой пылью проволочки производился другим лазером. Одновременно проводились численные эксперименты с использованием программы SOVA, где размер частиц принимался равным 1 мкм, а энергия лазерного взрыва — 30 Дж. Результаты расчетов показали, что частицы поднимаются на высоту 0,2–0,4 см, заполняя область за косой волной (к моменту времени 5 мкс волна проходит по теплому слою∼ 1,6 см). Эти эксперименты и расчеты использовались для моделирования возникновения пыльных бурь [Rybakov et al., 1997] после ударов небольших метеороидов на Марсе, где в силу разреженности атмосферы сравнительно небольшие метеороиды (порядка 1 м) достигают поверхности.
Для Земли удар по поверхности возможен для тел размером более ∼ 50–400 м (критический размер разный для кометных, каменных и железных тел). Однако даже если тело не достигло поверхности, «взрыв» над пустынной поверхностью («Тунгуска» не в тайге, а в пустыне) может вызвать подъем пыли за счет импульсного ветра — движения высокоскоростной струи перед ударной волной вдоль поверхности с теплым слоем. Заметим, что подъем частиц пыли ветром происходит не только за счет трения, но и за счет сальтации, т. е. удара увлеченных воздухом частиц, выбивающих при своем падении новые частицы или упруго отскакивающих снова в поток.
В последние годы были предприняты довольно интенсивные поиски кратеров в пустынных районах Земли. Paillou et al. [2003], используя радарные изображения со спутников, в юго-восточной части Ливийской пустыни обнаружили двойную кратерную структуру, частично скрытую песчаными наносами. Полевые исследования показали, что каждый из этих кратеров имеет диаметр около 10 км и возраст менее 140 млн лет. В юго-западной части Египетской пустыни на площади более 4500 км 2было обнаружено 13 кратеров диаметром от 20 м до 1 км [Paillou et al., 2004]. Вряд ли столь большое кратерное поле было создано одним космическим телом. Скорее всего, оно было вызвано его фрагментацией еще до входа в атмосферу.
Читать дальшеИнтервал:
Закладка: