Борис Шустов - Астероидно-кометная опасность: вчера, сегодня, завтра
- Название:Астероидно-кометная опасность: вчера, сегодня, завтра
- Автор:
- Жанр:
- Издательство:Физматлит
- Год:2010
- Город:Москва
- ISBN:978-5-9221-1241-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Борис Шустов - Астероидно-кометная опасность: вчера, сегодня, завтра краткое содержание
Проблема астероидно-кометной опасности, т. е. угрозы столкновения Земли с малыми телами Солнечной системы, осознается в наши дни как комплексная глобальная проблема, стоящая перед человечеством. В этой коллективной монографии впервые обобщены данные по всем аспектам проблемы. Рассмотрены современные представления о свойствах малых тел Солнечной системы и эволюции их ансамбля, проблемы обнаружения и мониторинга малых тел. Обсуждаются вопросы оценки уровня угрозы и возможных последствий падения тел на Землю, способы защиты и уменьшения ущерба, а также пути развития внутрироссийского и международного сотрудничества по этой глобальной проблеме.
Книга рассчитана на широкий круг читателей. Научные работники, преподаватели, аспиранты и студенты различных специальностей, включая, прежде всего, астрономию, физику, науки о Земле, технические специалисты из сферы космической деятельности и, конечно, читатели, интересующиеся наукой, найдут для себя много интересного.
Астероидно-кометная опасность: вчера, сегодня, завтра - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Из 180 найденных на Земле ударных кратеров в Африке находится 17. В пустынных районах Сахары, безусловно, еще будут найдены кратеры, скрытые под песчаными наносами. Ранее в Саудовской Аравии, в пустыне Руб-аль-Кали, была найдена группа из 4 кратеров (Вабар) диаметром от 17 до 100 м в области размером 400 × 200 м [Holm, 1962]. На месте падения было обнаружено метеоритное железо. Люминесцентный анализ показал очень небольшой возраст этого падения — всего 290 лет [Prescott et al., 2004]. Моделирование песчаных облаков, вызванных ударами в песчаные пустыни Земли или «взрывами» над ними и эрозией ветровыми потоками, тем более с учетом действия светового излучения и эффекта теплого слоя, пока не проводилось.
8.3. Выброс струй воды и цунами, вызванные ударами
Моря и океаны покрывают большую часть поверхности Земли, поэтому вероятность ударов астероидов и комет по водной поверхности выше, чем по суше.
Волны в воде в ближней зоне удара. Волны, вызванные падением метеороидов в океаны и моря, распространяются от места удара на большие расстояния и могут вызвать весьма серьезные последствия [Hills and Mader, 1995; Hills et al., 1994]. Удары по водной поверхности так же, как и по суше, вызывают образование кратера. Поскольку кратер в воде нестабилен, помимо волн, вызванных непосредственно ударом, после заполнения кратера водой и его схлопывания возникают волны, распространяющиеся наружу [Gault and Sonnet, 1982]. Астероиды с размерами, большими чем глубина океана, вызывают вблизи места удара волны с амплитудой, сравнимой с этой глубиной [Ahrens and O’Keefe, 1983, 1987; Roddy et al., 1987].
Численные расчеты [Ahrens and O’Keefe, 1987; Roddy et al., 1987] дали детальную картину начальной стадии гидродинамических процессов, инициированных вертикальным падением 10-километрового каменного тела со скоростью 20 км/с и энергией 6 10 7Мт ТНТ в океан глубиной 5 км. Через 120 с после падения высота волны в воде приблизительно равна 4 км. В работе [Nemchinov et al., 1993] численные расчеты были выполнены для кометы диаметром 2 км, имеющей такую же скорость и падающей в океан глубиной 4 км. Через 37 с после удара высота волны в воде составляет 1,3 км на расстоянии 18 км от места удара (это существенно нелинейная стадия распространения волны). Энергия 150-метрового железного тела, движущегося со скоростью 20 км/с, равна 600 Мт. Такое тело пройдет через 600-метровую толщу морской воды почти без замедления и испарит большое количество воды ударной волной, а также вызовет образование кратера в морском дне почти такого же размера, что и при ударе о поверхность суши [Croft, 1982].

Рис. 8.11. Образование кратера и формирование волн цунами при ударе каменного тела диаметром 600 м о поверхность океана глубиной 1 км
На рис. 8.11 проиллюстрировано образование кратера в воде и океанском дне и формирование волн в воде в ближней зоне при ударе каменного тела диаметром 600 м о поверхность океана глубиной 1 км (расчеты были проведены по программе SOVA). Как видно, через 30 с после удара высота водяной струи составляет примерно 2,5 км. В момент времени 60 с эта струя уже разрушилась; гребень волны, вызванной ударом, находится на расстоянии ∼ 12 км от места падения. При ударе железного астероида диаметром 1 км с энергией 1,5 10 6Мт ТНТ высота струи достигает 19 км, высота волны вблизи места удара достигает 0,8 км и снижается до 0,4 км на расстоянии 64 км от места удара.
Для случая плотности ударника ρ = 3 г/см 3, его скорости V = 20 км/с и эффективности передачи энергии воде ε = 0,15 в работе [Ward and Asphaug, 2003] зависимость диаметра d и глубины h временного кратера в глубокой воде была аппроксимирована соотношением
d = 117D 0 3/4, h = d/3,13,
где D 0 — диаметр ударника в метрах. Для D 0= 300 м диаметр временного кратера d составит 8,4 км, а его глубина h = 2,7 км.
Экспериментальные данные по распространению волн в воде на боль шие расстояния. При распространении волн в воде на большие расстояния в случае цилиндрической симметрии простая оценка такова: высота волны h w ∼ 1/r, где r — расстояние от центра. Этот закон согласуется с эмпирическим соотношением [Коробейников, Христофоров, 1976], полученным при анализе результатов подводных взрывов ТНТ. Распространение волн в воде в эксперименте [Glasstone and Dolan, 1977] также подчиняется этому закону. Исходя из этого легко получить следующую оценку: h w= 10 м на расстоянии 2000 км для 2-километровой кометы, падающей в океан глубиной от 4 км, и на расстоянии 3000 км для 150-метрового железного тела, падающего в море глубиной 600 м (это средняя глубина Балтийского моря). Такая высота водяной волны (10 м) соответствует высоте наиболее разрушительного цунами, зарегистрированного на Курильских островах в течение XX в. [Шокин и др., 1989].
Анализ экспериментальных данных по подводным ядерным взрывам [Glasstone and Dolan, 1977] привел к следующим эмпирическим зависимостям высоты h цунами над уровнем невозмущенного океана для случая, когда максимальная глубина водяного кратера заметно меньше глубины океана. На расстоянии r от места взрыва с энергией E

где h и h w(h w — полная высота волны) выражены в м, E — в Мт, а r — в км. Отметим, что астероид диаметром 500 м при скорости 20 км/с имеет энергию 10 000 Мт ТНТ. Астероиды диаметром менее 200 м обычно заметно теряют свою энергию за счет диссипации в атмосфере и снижают свою среднюю плотность, что приводит к заметному уменьшению высоты волн.
Средняя глубина океана d составляет 4–5 км. Если максимальная глубина кратера в воде становится сравнимой с этой величиной, то высота волны (в метрах) определяется по следующей эмпирической формуле:

В работе [Schmidt and Holsapple, 1982] на основании лабораторных экспериментов было установлено, что глубина кратера в воде примерно в 12 раз больше, чем диаметр ударяющего космического тела.
Помимо геометрической расходимости существует и дисперсия волн различных частот.
Цунами. Астероиды с размерами, заметно меньшими глубины океана, вызывают волны, которые можно назвать волнами в глубокой воде. Такие волны не представляют значительной опасности вплоть до больших расстояний от места удара. Если же волна попадает на мелководье, ее скорость уменьшается и ее фронт увеличивает свою крутизну — огромная волна цунами опрокидывается на побережье. Берега морей и океанов являются обычно областями с высокой плотностью населения и промышленности, что увеличивает опасность, исходящую от цунами. Такие низко лежащие площади, как территории Нидерландов и Дании, могут быть затоплены, а большие города и даже целые промышленные регионы, расположенные у берегов, могут быть погружены в воду (конечно, при падении очень больших тел).
Читать дальшеИнтервал:
Закладка: