Александр Петров - Гравитация. От хрустальных сфер до кротовых нор
- Название:Гравитация. От хрустальных сфер до кротовых нор
- Автор:
- Жанр:
- Издательство:Литагент «Век»bb4c9c45-fa84-11e2-88f2-002590591dd6
- Год:2013
- Город:Фрязино
- ISBN:978-5-85099-190-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Петров - Гравитация. От хрустальных сфер до кротовых нор краткое содержание
В книге рассказывается о развитии представлений о тяготении за всю историю науки. В описании современного состояния гравитационной теории основное внимание уделено общей теории относительности, но рассказано и о других теориях. Обсуждаются формирование и строение черных дыр, генерация и перспективы детектирования гравитационных волн, эволюция Вселенной, начиная с Большого взрыва и заканчивая современной эпохой и возможными сценариями будущего. Представлены варианты развития гравитационной науки, как теоретические, так и наблюдательные.
Гравитация. От хрустальных сфер до кротовых нор - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Впервые эксперимент был поставлен американским физиком Альбертом Майкельсоном (1852–1931) в 1881 году и повторен им на усовершенствованной установке совместно с Эдвардом Морли (1838–1923). Точность эксперимента в несколько раз превосходила ожидаемый результат, но эффект не был зарегистрирован. Многократные попытки в последующие десятилетия на усовершенствованных приборах так и не привели к успеху. Зарегистрировать наличие эфира не удалось.
Итак, пришлось смириться с тем, что эксперимент Майкельсона и Морли не в состоянии выявить факт движения Земли относительно эфира. Однако теоретические попытки спасти концепцию эфира продолжались.
Голландский физик Хендрик Лоренц (1853–1928) и ирландский ученый Джордж Фицджеральд (1851–1901) независимо друг от друга попытались объяснить, почему не удалось зарегистрировать эфир. Вспомним, что для расчета в опыте Майкельсона – Морли существенным образом используются преобразования Галилея, которые по сути своей очень просты. Теперь же выдвигалась гипотеза, что в результате движения сквозь эфир уменьшается длина вдоль движения и замедляется ход часов. Эти преобразования устраиваются как раз так, что движение относительно эфира остается незамеченным. Подводя итог на тот период, замечательный французский математик Жюль Анри Пуанкаре (1854–1912) отмечал, что если преобразования Лоренца (как их стали называть с его подачи) верны, то эфир, если он и существует, все равно не доступен наблюдению. А поскольку вопрос о существовании или отсутствии эфира не удается решить, то остается рассматривать только относительные (не абсолютные) движения.
Но если сохранить наличие эфира в принципе, то возникает другая проблема. В силу принципа относительности Галилея законы механики Ньютона имеют один и тот же вид и верны во всех инерциальных системах отсчета. Для электродинамики Максвелла это правило не выполняется, поскольку ее уравнения существенным образом содержат скорость света. Действительно, если использовать преобразования Галилея, то скорость света должна быть разной в разных инерциальных системах отсчета, а это недопустимо для уравнений Максвелла. С другой стороны, они оказались инвариантными относительно преобразований Лоренца!
Таким образом, на рубеже XIX и XX веков возникла критическая ситуация в понимании места механики и электродинамики в общей физической картине мира. Теоретические и опытные данные вступили в противоречие. Эта ситуация требовала разрешения.
Глава 5
Специальная теория относительности
Установив исходные факты, мы начнем строить, основываясь на них, нашу теорию и попытаемся определить, какие моменты в данном деле можно считать узловыми.
Конан Дойль «Записки Шерлока Холмса»Принципы построения
Попытки решить возникшие проблемы чрезвычайно активными были в начале XX века. В результате в 1905 году была окончательно сформулирована специальная теория относительности (далее будем обозначать ее СТО) и представлена одновременно в работах Альберта Эйнштейна (1879–1955), и Анри Пуанкаре. Позднее теория была представлена немецким математиком и физиком Германом Минковским (1864–1909) в четырехмерном формализме, объединяющем пространство и время. До сих пор идут споры – и кто, и что, и кто раньше, а кто позже. В конце главы мы кратко расскажем о взаимоотношениях между учеными той великой эпохи. Вне всяких сомнений, важный вклад внес каждый из исследователей.
Разные авторы по-разному приводят и формулируют принципы (постулаты), на основании которых построена СТО. Но можно сказать, что существуют два основных принципа, которые обычно представлены явно.
Первый из них – это принцип относительности , согласно которому во всех инерциальных системах отсчета действуют одни и те же физические законы. Принцип относительности, прежде всего, устраняет различия в проявлениях законов механики и электродинамики при переходе в другие инерциальные системы. Он также исключает идею о неподвижном эфире абсолютного пространства. Часто этот принцип называют принципом относительности Пуанкаре – Эйнштейна, который, конечно, является расширением принципа относительности Галилея на все физические явления.
Второй принцип постулирует постоянство (неизменность) скорости света во всех инерциальных системах отсчета. Обычно в качестве постулата выбирается некая аксиома, то есть очевидное утверждение, не требующее доказательств. Второй же принцип выглядит скорее парадоксальным, чем очевидным. На первый взгляд он плохо сочетается с принципом относительности. Поэтому можно только восхищаться смелостью и гениальностью создателей СТО.
Остальные принципы иногда озвучиваются явно, иногда скрыты в процессе построений. Они частично перекрываются двумя, отмеченными выше. Как минимум, нужно упомянуть, что все построения (измерение расстояний и отсчет времени) ведутся с помощью световых (электромагнитных) сигналов.
Была построена теория, удовлетворяющая этим принципам. Оказалось, что преобразования Галилея нужно заменить преобразованиями Лоренца. Их использование приводит к преобразованиям не только пространственных координат, но и времени, все перемешивая. Таким образом, становится естественным рассматривать пространство и время не по отдельности, а как составляющие единой «арены», на которой рассматриваются физические взаимодействия, – пространственно-временного континуума, или просто пространства-времени.
Напомним, что уравнения электродинамики неизменны (инвариантны) относительно преобразований Лоренца (иначе: лоренц-инвариантны ). Это и означает, что законы электромагнетизма одни и те же во всех инерциальных системах отсчета. Но как быть с законами механики, которые инвариантны относительно преобразований Галилея, но не Лоренца? А эти законы пришлось подправить для случая скоростей близких к скорости света, и их называют релятивистскими законами механики. При малых скоростях тел (значительно меньших световых) релятивистские законы переходят в законы механики Ньютона.
Эффекты СТО
Названия созвездий вы можете и забыть, но людей, которые не преклоняются перед чудесами природы, я считаю недостойными уважения.
Сэмуэль Майкельсон (отец Альберта Майкельсона)Теперь обсудим наиболее важные и интересные эффекты специальной теории относительности. Многие из них оказались неожиданными для бытового восприятия. Но нет никаких противоречий, просто нам в повседневной жизни не доводится перемещаться с околосветовыми скоростями, а именно тогда эти эффекты становятся наблюдаемыми.
Относительное сокращение длины. Как отмечали Лоренц и Фицджеральд, движение любого объекта влияет на измеренную величину его длины. Представим космический корабль, который проносится мимо нас с большой скоростью. Для нас его размеры уменьшатся. Чем ближе скорость корабля к скорости света, тем более заметным становится этот эффект. При приближении его скорости к световой, сжатие будет стремиться к предельному – нулевым размерам в направлении движения. Что
Читать дальшеИнтервал:
Закладка: