Ашот Григорьян - Механика от античности до наших дней

Тут можно читать онлайн Ашот Григорьян - Механика от античности до наших дней - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Наука, год 1974. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Механика от античности до наших дней
  • Автор:
  • Жанр:
  • Издательство:
    Наука
  • Год:
    1974
  • Город:
    М.
  • ISBN:
    нет данных
  • Рейтинг:
    3.5/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Ашот Григорьян - Механика от античности до наших дней краткое содержание

Механика от античности до наших дней - описание и краткое содержание, автор Ашот Григорьян, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга состоит из очерков, популярно излагающих историю эволюции теоретической механики от античности до наших дней. Она включает очерки античной механики, механики средневекового Востока и Европы эпохи Возрождения, механики XVII — XX вв. Отдельные главы посвящены достижениям механики в России и СССР. В книге рассматриваются классические понятия массы, силы, импульса, скорости, ускорения и т. д.

Механика от античности до наших дней - читать онлайн бесплатно полную версию (весь текст целиком)

Механика от античности до наших дней - читать книгу онлайн бесплатно, автор Ашот Григорьян
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

К эпохе Возрождения относятся и первые попытки приблизиться к понятию инерционного движения.

Некоторые соображения в этом смысле высказывал еще Аристотель, который утверждал, что приведенное в движение тело в пустоте должно либо находиться в покое, либо двигаться до бесконечности. Однако Аристотель приводит это соображение лишь как средство для доказательства (от противного) своего утверждения, что пустота в природе невозможна.

В попытках же, о которых идет речь, рассматривается не идеальный случай движения тела в пустоте, а конкретные случаи, когда устранены всякие поводы к изменению движения.

Для Николая Кузанского таким является случай движения идеального шара по идеальной горизонтальной плоскости. «Пусть пол совершенно плоский и шар совершенно круглый… Раз начав двигаться как таковой, такой шар никогда не перестанет двигаться, поскольку он не может менять свое состояние. Ведь движущееся не может перестать двигаться, не изменяя своего состояния в разное время. А потому шар, находясь на плоской и ровной поверхности, пребывая всегда в одинаковом состоянии, будучи однажды приведен в движение, двигался бы всегда» {79} 79 Цит. по кн.: А. Т. Григорьян, В. П. Зубов. Очерки…, стр. 30. .

В середине XVI в. движение шара по горизонтальной плоскости рассматривал Кардано. Он доказывал, что «всякое сферическое тело, касающееся плоскости в точке, движется в сторону под действием любой силы, способной разделять среду» {80} 80 Там же, стр. 31. . Далее он утверждал, что для передвижения шара по горизонтальной плоскости достаточна сколь угодно малая или «никакая» сила. Если, по его мнению, устранить сопротивление воздуха, то тело будет двигаться всегда.

Еще более решительно высказывает эти мысли Стевин: «Любые тяжести, движимые по горизонтали, каковы корабли на воде, телеги на равнинах полей и т. п., не нуждаются для своего движения даже в силе одной мухи, если оставить в стороне те препятствия, которые создает окружающая среда и которые мешают движению, каковы вода, воздух, трение колес, осей, толчки и удары о мостовую дорог и т. п.» {81} 81 Там же. .

Характерны размышления Кеплера по этому поводу. Небесное тело, по Кеплеру, имеет «в меру своей материи естественную неспособность переходить из одного места в другое, имеет естественную инерцию или покой и благодаря этому покоится в любом месте, где оно предоставлено самому себе» (дословно: «где оно находится в одиночестве») {82} 82 Там же, стр 29. .

«Всякое телесное вещество, или материя всех вещей, имеет то качество… что оно …неспособно само по себе переходить с одного места на другое, а потому тела должны быть притягиваемы или гонимы чем-то живым или иным» {83} 83 Там же, стр. 30. .

Очевидно, что все упомянутые авторы были еще очень далеки от понимания самой сути закона инерции. Даже Кеплер понимает инерцию лишь как сопротивление тела силе, которая стремится вывести его из состояния покоя, но не изменить скорость его движения. Открыть первый закон движения удалось лишь Галилею.

Однако именно Кеплеру принадлежит попытка динамического подхода к объяснению движения небесных тел, которая стала вместе с тем первым шагом к созданию действительной небесной механики. Он еще понимал силу по-аристотелевски, как величину, пропорциональную скорости (а не ускорению). Убывание скорости планеты по мере возрастания ее расстояния от Солнца ассоциируется с формулировкой закона рычага, восходящей к «Механическим проблемам»: если планета дальше от Солнца, она «тяжелее» и поэтому должна двигаться медленнее.

Позже Кеплер ассоциирует свое понятие о силе тяготения с понятием о силе магнитного притяжения, исходя из представления о Земле как о большом магните.

С другой стороны, сила, действующая на планеты, по его мнению, «обнаруживает теснейшее родство со светом».

В то же время (хотя в большинстве случаев он говорил только о притяжении планет Землей) Кеплер высказывает и некоторые соображения о тяготении тел друг к другу. Сила такого тяготения, по Кеплеру, обратно пропорциональна объемам (массам) тел, поэтому при движении друг к другу они должны до встречи пройти расстояния, обратно пропорциональные их массам. Таким образом, и в этом случае он рассматривает скорости и расстояния в линейной зависимости от величины «движущей силы», т. е. еще «по-аристотелевски».

Объяснение движения небесных тел с помощью земной механики стало окончательно возможным только после того, как Декарт сформулировал принцип инерции для прямолинейного движения, а Галилей установил принципы относительности, инерции, независимости действия сил и понятия скорости в данной точке, ускорения, сложения движений. Они, хотя и не были доведены до своего окончательного выражения, составили тот остов, на который могли опираться дальнейшие исследования. В сочетании с законами Ньютона это позволило создать единую механику, объединяющую законы криволинейного движения Кеплера и принципы динамики Галилея.

V.

НАЧАЛЬНЫЕ ЭТАПЫ КЛАССИЧЕСКОЙ МЕХАНИКИ

ВВЕДЕНИЕ

Генезис новой отрасли механики — динамики — не только совпал по времени с возникновением классической науки в целом, но и был одним из основных условий такого возникновения. Став учением о движении, механика могла претендовать на гегемонию, она начала объяснять всю совокупность явлений природы, логически развивая свои исходные принципы. Впоследствии такое сведение законов мироздания к механическим законам оказалось недостаточным, наука столкнулась с несводимостью более сложных форм движения к механическому перемещению. Но картина мира, нарисованная наукой в XVII в., уже не могла быть отброшена. Ее можно было конкретизировать, дополнять, изменять, но все эти модификации давали сходящийся ряд. Главным направлением науки стало подтверждение и уточнение старых знаний, и старые теории в пределах своей применимости приобрели историческую инвариантность: время могло их изменить, но уже не могло отбросить. Научный прогресс приобрел необратимый характер.

Такая достоверность научных представлений в рамках механической картины мира тесно связана с новым стилем научного исследования. Статика не могла слиться с экспериментальным исследованием. Динамика могла это сделать. Эксперимент исходит из начального состояния системы, подтверждает логический или математический вывод, сделанный на основе представления о механизме изменения, механизме перехода от начального состояния к последующему. Динамика говорит о том, что будет с телом при определенных начальных условиях и при определенных воздействиях. Именно в этом состоит схема эксперимента. Поэтому развитие динамики было условием развития экспериментального исследования. Последнее и придало механическому естествознанию ту необратимость развития и ту достоверность, которые отличают науку XVII в. от научных представлений предыдущего периода.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ашот Григорьян читать все книги автора по порядку

Ашот Григорьян - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Механика от античности до наших дней отзывы


Отзывы читателей о книге Механика от античности до наших дней, автор: Ашот Григорьян. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x