Игорь Джавадов - Понятная физика
- Название:Понятная физика
- Автор:
- Жанр:
- Издательство:Написано пером
- Год:2014
- Город:Санкт-Петербург
- ISBN:978-5-00071-127-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Игорь Джавадов - Понятная физика краткое содержание
В книге, которую Вы держите, о физике рассказано по-новому. Новый подход, который можно назвать энергетическим, избегает проблем обычного преподавания физики. В классическом преподавании физики видны две проблемы. Во-первых, сложилась вековая традиция преподавать физику не как систему современных знаний о различных видах энергии, а как историю отдельных наблюдений и открытий, не всегда связанных между собой. Вторая проблема вытекает из первой – избыточность терминов. Взять хотя бы электричество. Электричество изучали Ампер, Фарадей, Ом и другие выдающиеся учёные. Вместе с их открытиями в физику вошли такие понятия как электродвижущая сила, разность потенциалов, напряжение и другие авторские термины. Разумеется, мы должны чтить вклад гениев в науку. Но с точки зрения современной физики речь идёт об одной и той же величине, измеряемой в вольтах. Для измерения указанных величин не нужны три разных прибора, достаточно одного вольтметра.
Почему современные авторы до сих пор делают вид, что школьник XXI века не смотрит телевизор, не знает компьютер? Раздел «Электричество» традиционно начинают с рассказа о древних греках, которые полировали янтарь тряпочкой и получали при этом электрические искры. Да, сто лет назад это было новостью для рабочего, принятого без экзаменов на рабфак. Но это неинтересно современному школьнику, который играет на электрогитаре и сам собирает усилитель.
Предлагаемый курс физики основан на понятии энергии, так как главной задачей физики является поиск новых видов энергии. Все согласны, что энергия не вектор. Значит, при выводе уравнений можно обойтись без векторной алгебры. Это делает физику более понятной, так как обычная алгебра намного проще векторной.
Понятная физика - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Центростремительная сила Fцс характеризует работу А электромотора, который передает энергию Е через рычаг кабинке. Применяя уравнение (14.2) к вращению центрифуги, мы должны учесть, что сила Fцс зависит от радиуса вращения. Известно, что при вращении карусели центробежная сила в центре равна нулю, а на краю карусели она максимальна. Если путь s от центра до окружности равен R, значит, нужно взять среднее значение силы: F = Fцс/2. Подставляя данные в уравнение (14.2), получаем уравнение вращения: E = Fцс*R/2 (14.3). С другой стороны, Е = А= Рt, где Р – мощность электродвигателя. Работа электродвигателя преобразуется в кинетическую энергию кабинки Ек = mv 2/2 (14.4). Очевидно, эти величины равны, так как одна переходит в другую: Е = Ек. Приравняем их: Fцс*R/2 = mv 2/2. Решая относительно Fцс, получаем искомое уравнение: Fцс = mv 2/R (14.5).
Из (14.5) легко получить формулу для центростремительного ускорения а цс. По второму закону: F цс= mа цс. Подставляя в (14.5), получаем: mа цс= mv 2/R. Отсюда: а цс= v 2/R (14.6).
§ 15. Проектируем центрифугу
Применяя теорию к практике, попробуем спроектировать центрифугу для тренировки космонавтов. Примем исходные данные: площадь квадратного зала: 144 м 2, масса кабинки вместе с человеком 150 кг, максимальная допустимая перегрузка: 10 g.
Заметим, что ускорение а цсдля центрифуги принято измерять в g, которое равно примерно 10 м/с 2. Так удобнее для тренера. Зная вес курсанта, он сразу видит, во сколько раз увеличивается нагрузка на кресло центрифуги. В исходном положении нагрузка равна весу курсанта. При вращении вес курсанта увеличивается пропорционально ускорению а цс. Соответственно на кресло действует дополнительный вес, который и называют перегрузкой.
Если пол зала квадратный, значит, сторона пола равна 12 м. Вдоль стен нужно оставить зазор не менее 1.5 м (для вылета кабинки при отклонении). Для центрифуги остается квадрат 9х9 м 2. Значит, длина рычага должна быть не более 4.5 м. Отдадим 0.3 м для закрепления основания рычага на оси электродвигателя, а 0.2 м – для закрепления кабинки. Значит, расстояние между точками крепления будет равно 4 м. Это и есть радиус вращения R. В итоге, исходные данные таковы: радиус R = 4 м, масса m = 150 кг, максимальное ускорение а цс= 100 м/с 2.
Решение. Перегрузка получается при соответствующей скорости v, которую принято называть линейной (окружность, хотя и кривая, но линия), из (14.6): а цс= v 2/R, откуда v 2= Rа цс(15.1). Скорость v обеспечивает электромотор, развивая мощность P = E/t. Центрифуга преобразует энергию мотора Е = Pt в кинетическую энергию кабинки Ек = mv 2/2.
Чтобы выразить энергию через известные величины, умножим (15.1) на v 2/2. Получаем: Ек=mv 2/2 =mRа цс/2 (15.2). В правой части (15.2) сгруппированы исходные данные проекта. Подставляя их значения, получим: Ек = 150*4*100/2 = 30000 Дж (15.3). В (15.3) величина 4х100 есть не что иное, как v 2. Отсюда v = √ 400 = 20 м/с. Это приличная скорость. Если её развить за секунду, то ускорение будет чрезмерно большим. Кроме того, мотор с мощностью 30 кВт стоит слишком дорого. Практичнее будет, если на предельный режим v=20 м/с кабина с курсантом будет выходить секунд за 10. Для курсанта это будет безопаснее, а для заказчика – экономнее по затратам. Значит, для проекта достаточно мотора с мощностью P=E/t=30/10=3 (кВт). Полученные данные следует передать инженеру по оборудованию, чтобы он подобрал подходящий электромотор с мощностью до 3 кВт и регулируемой частотой вращения до 50 об/мин.
Следует подчеркнуть, что в стандартном учебнике вывод уравнения (14.6), основанный на понятии силы как вектора, занимает три страницы, не считая вводной главы по векторной алгебре. Применяя энергетический подход, мы получили результат в шесть раз быстрее. При этом векторная алгебра, не всегда понятная, нам не понадобилась.
§ 16. О безвозвратных потерях энергии
Для авиаконструкторов врагом номер один является сопротивление воздуха. Всю свою жизнь конструктор самолетов борется с этим явлением. Парадокс ситуации в том, что если у воздуха не было бы сопротивления, самолёт не мог бы летать. Подъёмная сила крыла возникает только благодаря сопротивлению среды. Это же сопротивление надо преодолевать, если желаешь двигаться. В таком случае говорят, что энергия теряется за счет трения. Для описания трения законов Ньютона недостаточно.
Представим, что нужно наточить нож. Если с силой водить бруском по лезвию ножа, то вскоре можно заметить, что нож и брусок нагрелись. Преодолевая силу трения, мы расходуем энергию: E = Fтр*s*n, где s – длина лезвия, n – число перемещений бруска. Вся эта энергия рассеивается внутри ножа и бруска, повышая их температуру. Обратный процесс невозможен, так как частицы бруска никогда не соберутся вместе, чтобы в едином порыве вернуть нож в ящик стола. Таким образом, мы имеем дело с особым видом передачи энергии, когда тела взаимодействуют, но в среднем не меняют своего положения. При этом энергия передаётся внутренней структуре тел, повышая их температуру. Нагретыми тела остаются недолго. Они отдают избыток энергии в воздух и остывают до температуры окружающей среды. Так энергия, затраченная на преодоление трения, теряется безвозвратно.
Аналогично заканчиваются явления, связанные с упругими свойствами вещества. Если стальную проволочку зажать в тисках и начать сгибать и разгибать, то вскоре можно заметить, что в месте сгиба сталь нагрелась. Мы затратили механическую энергию, воздействуя на проволочку, но она осталась в тисках на месте и только нагрелась. Наружного трения не было, энергия передавалась только за счёт изменения формы тела. При этом мы преодолевали силу упругой деформации, проще говоря, силу упругости. Эта энергия тоже потеряется безвозвратно, рассеявшись в пространстве.
Упругость зависит от качества материала. В механических часах имеется пружинка из очень упругой стали. Такая пружинка может годами сгибаться и разгибаться, заставляя часы ходить. Известны материалы, которые практически не обладают упругостью, например, пластилин. Такие материалы называются пластичными.
Мы выяснили, что в явлениях трения и упругости механическая энергия переходит в тепло. Ввиду того, что тепловые явления изучают в других разделах физики, мы сосредоточим внимание на природе сил трения и упругости. Вспоминается, как в одной популярной книге по физике рассматривались различные виды взаимодействия. Каких только сил там не было: электрические, магнитные, электромагнитные, инерции, трения, упругости, даже сила Архимеда. В общем, каждое явление природы сопровождалось персональной силой. С таким «засильем» сил невозможно согласиться. В энергетическом подходе сила – это не явление природы и даже не природная величина, такая как масса, длина, время. Сила – это характеристика темпа передачи энергии от одного тела другому.
Читать дальшеИнтервал:
Закладка: