Joaquin Sandalinas - До предела чисел. Эйлер. Математический анализ.
- Название:До предела чисел. Эйлер. Математический анализ.
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Joaquin Sandalinas - До предела чисел. Эйлер. Математический анализ. краткое содержание
Леонард Эйлер, без всякого сомнения, был самым выдающимся математиком эпохи Просвещения и одним из самых великих ученых в истории этой науки. Хотя в первую очередь его имя неразрывно связано с математическим анализом (рядами, пределами и дифференциальным исчислением), его титаническая научная работа этим не ограничивалась. Он сделал фундаментальные открытия в геометрии и теории чисел, создал с нуля новую область исследований — теорию графов, опубликовал бесчисленные работы по самым разным вопросам: гидродинамике, механике, астрономии, оптике и кораблестроению. Также Эйлер обновил и установил систему математических обозначений, которые очень близки к современным. Он обладал обширными знаниями в любой области науки; его невероятный ум оставил нам в наследство непревзойденные труды, написанные в годы работы в лучших академиях XVIII века: Петербургской и Берлинской.
До предела чисел. Эйлер. Математический анализ. - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
n! = √(2πn)(n/e) n.

Но главным его достижением стала формула для комплексных чисел, которая в современной записи выглядит так:
(cosx + /sinx) n= cosnx + isinnx.
Де Муавр остался холостяком и жил в бедности, но с гордостью изгнанника вспоминал, что в 1754 году Парижская академия наук избрала его своим иностранным членом. Умер ученый в Лондоне, и говорят, что он предсказал день своей смерти. Якобы де Муавр заметил, что каждый день спит на 15 минут больше, и, произведя подсчеты, вычислил день, когда должен был проспать 24 часа: 27 ноября 1754 года. Так и оказалось.
Эйлер использовал формулу Муавра, не приведя никакого ее доказательства. Он совместил ее с другой формулой, названной его именем и созданной еще в Базеле (как мы видели в главе 2):
е ix= cosx + isinx,
и вывел, пользуясь простым правилом возведения в степень, выражение, которое сегодня мы записали бы так:
е х+iy= е х(cosу + isiny).
Эйлер пришел к этим результатам, а также к другим, имеющим огромную важность, отталкиваясь от простого ряда Тейлора:
ex = Σ n=0 ∞x n/n! = 1 + x + x 2/2! + x 3/3! + x 4/4! + ...
В приложении 5 мы более подробно объясним, как Эйлер вывел свою формулу из этого выражения.
Если мы подставим вместо х число π, то, по формуле Эйлера, получим:
e ix= cosπ + isinπ = -1 + i0 = -1,
а перенеся -1:
e ix+ 1 = 0.
Многие математики считают это уравнение, известное как тождество Эйлера, самым красивым в этой науке.
В Introductio in analysin infinitorum можно также обнаружить понятие логарифма в форме, позволяющей решить задачу отрицательных логарифмов, которая не давала Эйлеру покоя со времен его базельской юности. Он совершенно правильно определял их как результат операции, обратной возведению в степень:
a logº x= x.
а это значит, что логарифм в области комплексных чисел имеет бесконечное число значений, которые отличаются только четным произведением π, то есть 2kπ. В частности:
ln(-1) = iπ + 2kπ(k € Z),
что приводит нас к таким выражениям, как
i i= e ilni= e (-π/2)~ 0,2078795764.
В этой работе также впервые появляются число е, формула Муавра, ряд степеней sinx и cosx, понятие функции, несколько степенных рядов (а также представлено другое решение Базельской задачи) и так далее, объясняются и систематизируются начала аналитической геометрии, неразрывно связанной с анализом. Среди затронутых тем можно найти косоугольные и полярные координаты, преобразование координат, асимптоты, кривизну, пересечение кривых, касательные и многие другие. Подход Эйлера к этим понятиям не просто современен, он действительно соединил точки зрения Ньютона и Лейбница и объяснил раз и навсегда, что дифференцирование и интегрирование являются обратными друг другу действиями, двумя сторонами одной медали. В Institutiones calculi differentialis и Institutiones calculi integralis содержится первое исследование рядов, непрерывных дробей, дифференциальных уравнений, включая частные производные, максимумы, минимумы и так далее. Эйлер начал интеллектуальную схватку длиною в жизнь с числовыми рядами: никто не знал, сходятся ли эти бесконечные суммы, и если сходятся, то к чему. В некоторых случаях расхождение было очевидным, как, например, в так называемом гармоническом ряде:
1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 + ... ,
который итальянский математик Пьетро Менголи сгруппировал так:
1 + 1/2 + (1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) +
+ (1/9 + 1/10 + 1/11 + 1/12 + 1/13 + 1/14 + 1/15 + 1/16) + ...
≥ 1 + 1/2 + 1/2 + 1/2 + 1/2 + ... ,
показав, что его сумма бесконечна. Другие же вызывали недоумение. Рассмотрим пример:
1 - 1 + 1 - 1 + 1 - 1 + ...
В таком виде кажется, что его сумма равна 0:
(1-1) + (1-1) + (1-1) + ... = 0,
а если сгруппировать его так, то сумма равна 1:
1 + (-1 + 1) + (-1 + 1) + (-1 + 1) + ... = 1.
На самом деле оба результата неправильны. Эйлер, как и другие математики того времени, предпочитал исходить из известного ряда
1/(1-x) = 1 + x + x 2+ x 3+ x 4+ x 5+ ...
Подставив вместо х число -1, он пришел к
1/2 = 1/(1- (-1)) = 1 + (-1) + (-1) 2+ (-1) 3+ (-1) 4+ (-1) 5+ ...
= 1 - 1 + 1 - 1 + 1 - 1.
то есть ни 1, ни 0: Эйлер утверждал, что сумма равна 1/2.
К арсеналу уже известных к тому времени рядов



Эйлер постепенно добавил много собственных результатов: решение Базельской задачи; формулу суммирования Эйлера — Маклорена, которая улучшала сходимость, если таковая наблюдалась; преобразование рядов через конечные и последовательные разности; а также важные открытия в области расходящихся рядов. Фактически, в 1755 году, то есть в эпоху, когда еще не существовало понятие предела, ученый уже различал сходящиеся и расходящиеся ряды. Среди рядов, суммированных Эйлером, мы находим

π/(3√3) = 1 - 1/2 + 1/4 - 1/5 + 1/7 - 1/8 + ...
π/(2√2) = 1 + 1/3 + 1/5 + 1/7 + 1/9 + 1/11 + ...
π/3 = 1 + 1/5 - 1/7 - 1/11 + 1/13 - 1/17 + ...
π 2/(8√2) = 1 - 1/3 2- 1/5 2+ 1/7 2+ 1/92 + ...
π 2/(6√3) = 1 - 1/5 2- 1/7 2+ 1/112 + 1/13 2+ ...
1 -1! + 2! -3! + ... = 0,596347362123...
Он также открыл два новых ряда. Один — данная последовательность степеней:
arxtgz = z - z3/3 + z5/5 + z7/7 + ... ,
а вторым был первый ряд Фурье в истории, который Эйлер описал в 1744 году в письме Гольдбаху, то есть задолго до того, как Жозеф Фурье (1768-1830) начал свои знаменитые исследования. И даже до того, как Фурье родился.
1/2x = sinx - 1/2 sin 2х + 1/3 sin Зx - ...
Вклад Эйлера в теорию чисел огромен, и его подробное изложение не является целью этой книги. Достаточно сказать, что только Карл Густав Якоб Якоби (1804-1851) и Сриниваса Рамануджан Айенгор (1887-1920) могут сравниться с ним по значению своих работ в этой области. Еще одним важным разделом математики, интересовавшим Эйлера, были дифференциальные уравнения. Здесь его самым знаменитым открытием, возможно, является метод Эйлера, позволяющий приближенно решать дифференциальные уравнения первого порядка.
ГЛАВА 4
Эйлер и теория чисел
Эйлер, имевший серьезные проблемы со зрением, в России мог бы удалиться от дел и спокойно почивать на лаврах. Но он работал до самой смерти: глубоко исследовал теорию чисел, добился превосходных результатов в области простых чисел, чисел Мерсенна и чисел Бернулли, а также диофантовых уравнений и разбиения множеств. Он также успел уделить время игровой математике и даже написал несколько научно-популярных книг.
Причиной возвращения Эйлера в Россию в 1766 году стало желание императрицы Екатерины II вернуть Академии былую славу. Ученый никогда не терял связи с Россией, даже живя в Берлине. Хорошо известно, что он посылал в Санкт- Петербург множество статей, которые были логическим продолжением работ, впервые опубликованных именно в России. Ученый также постоянно получал вознаграждение от Российской империи за решение определенных задач, например военного характера, и оказывал протекцию молодым русским, приезжавшим учиться в Европу. За научный вклад в работу Петербургской академии Эйлеру в 1742 году, когда он еще был в Берлине, была назначена пенсия. Один любопытный исторический факт дает представление не только о подробностях второго путешествия Эйлера в Россию, но и о том, насколько не сложились его отношения с предыдущим покровителем. В одном из своих писем Фридрих сожалел об утере целого ряда личных записок ученого во время кораблекрушения, произошедшего по пути в Санкт-Петербург: "Какая жалость, ведь из этих записок могло бы получиться шесть томов трактатов, полных цифр от начала и до конца, а теперь, видимо, Европа лишилась такого приятного чтения".
Читать дальшеИнтервал:
Закладка: