Ричард Фейнман - 9. Квантовая механика II

Тут можно читать онлайн Ричард Фейнман - 9. Квантовая механика II - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    9. Квантовая механика II
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.2/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 9. Квантовая механика II краткое содержание

9. Квантовая механика II - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

9. Квантовая механика II - читать онлайн бесплатно полную версию (весь текст целиком)

9. Квантовая механика II - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Kb 2 = h/m эфф

Если вы затем положите Е 0 =+ 2 К и снова вернетесь к f ( x ) = ( q/h ) A x , то легко убедитесь, что (19.6) это то же самое, что первая часть (19.3). (Происхождение члена с потенциальной энергией хорошо известно, и я не буду им заниматься.) Утверж­дение (19.1) о том, что векторный потенциал умножает все амп­литуды на экспоненциальный множитель, равнозначно правилу, что оператор импульса ( h/i )Сзаменяется на (h /i )С- q A, как мы и сделали в уравнении Шредингера (19.3).

§ 2. Уравнение непрерывности для вероятностей

Перехожу теперь ко второму пункту. Важную сторону урав­нения Шредингера отдельной частицы составляет идея о том, что вероятность обнаружить частицу в каком-то месте опреде­ляется квадратом абсолютной величины волновой функции. Для квантовой механики характерно также то, что вероятность сохраняется локально (т. е. в каждом отдельном месте). Когда вероятность обнаружить электрон в таком-то месте убывает, а вероятность обнаружить его в каком-то другом месте возрас­тает (так что полная вероятность не меняется), то что-то в про­межутке между этими местами должно было произойти. Иными словами, электрон обладает непрерывностью в том смысле, что если вероятность спадает в одном месте и возрастает в другом, то между этими местами должно что-то протекать. Так, если вы между ними поставите стенку, то это скажется на вероятностях и они станут не такими, как были. Следовательно, одно только сохранение вероятности не есть полная формулировка закона сохранения, все равно как одно только сохранение энергии не обладает такой глубиной и не представляет такой важности, как локальное сохранение энергии [см. гл. 27, § 1 (вып. 6)]. Если энергия исчезает, то этому должен соответствовать отток энергии от этого места. Вот и у вероятности хотелось бы обнару­жить такой же «ток». Хотелось бы, чтобы было так: если где-нибудь переменится плотность вероятности (вероятность об­наружить что-то там такое в единице объема), то чтобы можно было считать, что вероятность откуда-то сюда притекла (или утекла отсюда куда-то еще). Такой ток был бы вектором, кото­рый можно было бы толковать следующим образом: его x-ком понента была бы чистой вероятностью (в секунду и на единицу объема) того, что частица пройдет в направлении х через пло­скость, параллельную плоскости yz. Проход в направлении + x считается положительным потоком, а проход в обратную сто­рону — отрицательным потоком.

Существует ли такой ток? Вы знаете, что плотность вероят­ности P(r, t) выражается через волновую функцию

И вот я спрашиваю существует ли такой ток J что Если я - фото 610

И вот, я спрашиваю: существует ли такой ток J, что

Если я продифференцирую 197 по времени то получу два слагаемых - фото 611

Если я продифференцирую (19.7) по времени, то получу два слагаемых

Теперь для д y дt возьмите уравнение Шредингера уравнение 193 кроме - фото 612

Теперь для д y /дt возьмите уравнение Шредингера — уравне­ние (19.3); кроме того, комплексно его сопрягите, т. е. перемените знак при каждом i, чтобы получить д y j/дt. У вас выйдет

Члены с потенциальной энергией и многие другие члены взаимно уничтожатся А то - фото 613

Члены с потенциальной энергией и многие другие члены взаимно уничтожатся. А то, что останется, оказывается, дей­ствительно можно записать в виде полной дивергенции. Все уравнение целиком эквивалентно уравнению

Не так уж сложно как кажется на первый взгляд Это симметричная комбинация из - фото 614

Не так уж сложно, как кажется на первый взгляд. Это симмет­ричная комбинация из y*, умноженного на некоторую операцию над y, плюс y, умноженное на комплексно сопряженную опера­цию над y*. Это просто некоторая величина плюс комплексно сопряженная ей величина, так что все вместе (как и поло­жено быть) вещественно. Операция запоминается так: это попросту оператор импульса минус qA Ток из 198 я могу записать в виде Тогда это и есть тот ток - фото 615минус qA.. Ток из (19.8) я могу записать в виде

Тогда это и есть тот ток J который удовлетворяет уравнению 198 Уравнение - фото 616

Тогда это и есть тот ток J, который удовлетворяет уравнению (19.8).

Уравнение (19.8) показывает, что вероятность сохраняется локально. Если частица исчезает из одной области, то она не может оказаться в другой без того, чтобы что-то не протекло в промежутке между областями. Вообразите, что первая область окружена замкнутой поверхностью, которая проведена так да­леко, что имеется нулевая вероятность обнаружить на ней элект­рон. Полная вероятность обнаружить электрон где-то внутри поверхности равна объемному интегралу от Р. Но, согласно теореме Гаусса, объемный интеграл от дивергенции Jравняется поверхностному интегралу от J. Если y на поверхности равно нулю, то (19.12) утверждает, что и Jесть нуль; значит, полная вероятность отыскать частицу внутри поверхности не может измениться. Только тогда, когда часть вероятности достигает границы, какая-то ее часть может вытечь наружу. Мы вправе говорить, что она выбирается наружу только через поверхность— это и есть локальная сохраняемость.

§ 3. Два рода импульсов

Уравнение для тока довольно интересно, хотя порой причи­няет немало забот. Ток можно было бы считать чем-то вроде про­изведения плотности частиц на скорость. Плотность выглядела бы как yy*, так что здесь все в порядке. Каждый член в (19.12) напоминает типичное выражение для среднего значения опера­тора

Поэтому быть может следовало бы рассматривать его как скорость потока Но - фото 617

Поэтому, быть может, следовало бы рассматривать его как ско­рость потока? Но тогда получается, что скорость с импульсом можно связать двояким образом, ведь с равным правом можно было бы считать, что скоростью должно быть отношение импуль­са к массе картинка 618 . Эти две возможности разнятся на вектор-потен­циал.

Оказывается, те же две возможности имелись еще в класси­ческой физике, и в ней тоже было найдено, что импульс можно определить двумя путями. Один можно назвать «кинематиче­ским импульсом», но для абсолютной ясности я в этой лекции буду его называть « mv -импульсом». Это импульс, получаемый от перемножения массы на скорость. Другой, более математичный, более отвлеченный импульс, именуемый иногда «динамическим импульсом», а я его буду называть « р -импульс». Итак, у нас есть две возможности:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




9. Квантовая механика II отзывы


Отзывы читателей о книге 9. Квантовая механика II, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x