Ричард Фейнман - 9. Квантовая механика II
- Название:9. Квантовая механика II
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - 9. Квантовая механика II краткое содержание
9. Квантовая механика II - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Ответ не нуль. Вся операция попросту равнозначна умножению на - h/i :
Если бы постоянная Планка была равна нулю, то квантовые и классические результаты стали бы одинаковыми и не пришлось бы нам учить никакой квантовой механики!
Отметим, что если два каких-то оператора А и В, взятые в сочетании
не дают нуля, то мы говорим, что «операторы не перестановочны», или «операторы не коммутируют». А уравнение наподобие (18.74) называется «перестановочным соотношением». Вы можете сами убедиться, что перестановочное соотношение для p х и у (или коммутатор р х и у) имеет вид
Существует еще одно очень важное перестановочное соотношение. Оно относится к моментам количества движения. Вид его таков:
Если вы хотите приобрести некоторый опыт работы с операторами x ^ и p ^, попробуйте доказать эту формулу сами.
Интересно заметить, что операторы, которые не коммутируют, можно встретить и в классической физике. Мы с этим уже сталкивались, когда говорили о поворотах в пространстве. Если вы повернете что-нибудь, например книжку, сперва на 90° вокруг оси х, а затем на 90° вокруг оси у, то получится совсем не то, что было бы, если бы сначала вы повернули ее на 90° вокруг оси у, а после на 90° вокруг оси х. Именно это свойство пространства и ответственно за уравнение (18.75).
§ 7. Изменение средних со временем
Теперь мы познакомим вас с еще одной интересной вещью: вы узнаете, как средние изменяются во времени. Представим на минуту, что у нас есть оператор А^, в который время явным образом не входит. Имеется в виду такой оператор, как х^ или р^.
[А исключаются, скажем, такие вещи, как оператор внешнего потенциала V ( x, t ) , меняющийся во времени.] Теперь представим, что мы вычислили < A > срв некотором состоянии |y>, т. е.
Как < A > србудет зависеть от времени? Но почему оно вообще может зависеть от времени? Ну, во-первых, может случиться, что оператор сам явно зависит от времени, например, если он был связан с переменным потенциалом типа V ( x, t ) . Но даже если оператор от t не зависит, например оператор А^=х^, то соответствующее среднее может зависеть от времени. Ведь среднее положение частицы может перемещаться. Но как может такое движение получиться из (18.76), если А от времени не зависит? Дело в том, что во времени может меняться само состояние |y>. Для нестационарных состояний мы часто даже явно отмечали зависимость от времени, записывая их как |y( t )>. Теперь мы хотим показать, что скорость изменения < A > ср
дается новым оператором, который мы обозначим . Напомним, что
это оператор, так что точка над А вовсе не означает дифференцирования по времени, а является просто способом записи
нового оператора , определяемого равенством
Задачей нашей будет найти оператор .
Прежде всего, нам известно, что скорость изменения состояния дается гамильтонианом. В частности,
Это всего-навсего абстрактная форма записи нашего первоначального определения гамильтониана
Если мы комплексно сопряжем это уравнение, оно будет эквивалентно
Посмотрим теперь, что случится, если мы продифференцируем (18.76) по t. Поскольку каждое y зависит от t, мы имеем
Наконец, заменяя производные ихвыражениями (18.78) и (18.80), получаем
а это то же самое, что написать
Сравнивая это уравнение с (18.77), мы видим, что
Это и есть то интересное соотношение, которое мы обещали; и оно справедливо для любого оператора А.
Кстати заметим, что, если бы оператор А сам зависел от времени, мы бы получили
Проверим (18.82) на каком-либо примере, чтобы посмотреть, имеет ли оно вообще смысл. Какой, например, оператор соответствует х? Мы утверждаем, что это должно быть
Что это такое? Один способ установить, что это такое — перейти в координатное представление и воспользоваться алгебраическим оператором
. В этом представлении коммутатор равен
Если вы подействуете всем этим выражением на волновую функцию y( х )и вычислите везде, где нужно, производные, вы в конце концов получите
Читать дальшеИнтервал:
Закладка: