Ричард Фейнман - 9. Квантовая механика II
- Название:9. Квантовая механика II
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - 9. Квантовая механика II краткое содержание
9. Квантовая механика II - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Интеграл берется по х, поэтому р можно внести под интеграл
Теперь сравним это с (18.53). Может быть, вы подумали, что < x |b> равно p y( x )? Нет, напрасно! Волновая функция < х |b>=b( x ) может зависеть только от х, но не от р . В этом-то вся трудность.
К счастью, кто-то заметил, что интеграл в (18.55) можно проинтегрировать по частям. Производная e - ipx / h по х равна (-i/h)pe - ipx / h , поэтому интеграл (18.55) это все равно, что
Если это проинтегрировать по частям, оно превратится в
Пока речь идет только о связанных состояниях, y( x ) стремится к нулю при х® ±Ґ, скобка равна нулю и мы имеем
А вот теперь сравним этот результат с (18.53). Вы видите, что
Все необходимое, чтобы взять интеграл в (18.52), у нас уже есть. Окончательный ответ таков:
Мы узнали, как выглядит (18.48) в координатном представлении. Перед нами начинает постепенно вырисовываться интересная картина. Когда мы задали вопрос о средней энергии состояния |y>, то ответ был таков:
То же самое в координатном мире записывается так:
Здесь — алгебраический оператор, который действует на функцию от х.
Когда мы задали вопрос о среднем значении х, то тоже обнаружили, что ответ имеет вид
В координатном мире соответствующие уравнения таковы:
Когда мы задали вопрос о среднем значении р, то ответ оказался
В координатном мире эквивалентные уравнения имели бы вид
Во всех наших трех примерах мы исходили из состояния |y> и создавали новое (гипотетическое) состояние с помощью квантовомеханического оператора. В координатном представлении мы генерируем соответствующую волновую функцию, действуя на волновую функцию y ( x ) алгебраическим оператором. Можно говорить о взаимнооднозначном соответствии (для одномерных задач) между
В этом перечне мы ввели новый символ для алгебраического оператора (h/i)д/дx:
и поставили под значок х, чтобы напомнить, что имеем пока дело с одной только x -компонентой импульса.
Результат этот легко обобщается на три измерения. Для других компонент импульса
При желании можно даже говорить об операторе вектора импульса и писать
где е х , е y и е z — единичные векторы в трех направлениях. Можно записать это и еще изящнее:
Окончательный вывод наш таков: по крайней мере для некоторых квантовомеханических операторов существуют соответствующие им алгебраические операторы в координатном представлении. Все, что мы до сих пор вывели (с учетом трехмерности мира), подытожено в табл. 18.1. Каждый оператор может быть представлен в двух равноценных видах:
либо
либо
Теперь мы дадим несколько иллюстраций применения этих идей. Для начала выявим связь между .
Если применить дважды, получим
Это означает, что можно написать равенство
Или, в векторных обозначениях,
(Члены в алгебраическом операторе, над которыми нет символа оператора ^, означают простое умножение.) Это уравнение очень приятно, потому что его легко запомнить, если вы еще не забыли курса классической физики. Хорошо известно, что энергия (нерелятивистская) состоит из кинетической энергии р 2 /2m плюс потенциальная, а у нас — тоже оператор полной энергии. Этот результат произвел на некоторых деятелей столь сильное впечатление, что они начали стремиться во что бы то ни стало вбить студенту в голову всю классическую физику, прежде чем приступить к квантовой. (Мы думаем иначе!) Параллели очень часто обманчивы. Если у вас есть операторы, то важен порядок различных множителей, а в классическом уравнении он безразличен.
Интервал:
Закладка: