LibKing » Книги » sci-phys » Ричард Фейнман - 5b. Электричество и магнетизм

Ричард Фейнман - 5b. Электричество и магнетизм

Тут можно читать онлайн Ричард Фейнман - 5b. Электричество и магнетизм - бесплатно полную версию книги (целиком). Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте LibKing.Ru (ЛибКинг) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
libking
  • Название:
    5b. Электричество и магнетизм
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4.44/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Ваша оценка:

Ричард Фейнман - 5b. Электричество и магнетизм краткое содержание

5b. Электричество и магнетизм - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

5b. Электричество и магнетизм - читать онлайн бесплатно полную версию (весь текст целиком)

5b. Электричество и магнетизм - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать

Почему поле должно индуцировать дипольный момент у ато­ма, хотя атом не является проводящим шариком? Мы обсудим этот вопрос гораздо подробнее в следующей главе, которая бу­дет посвящена внутреннему механизму диэлектрических мате­риалов. А сейчас мы дадим лишь один пример, только чтобы проиллюстрировать возможный механизм. Атом имеет ядро с по­ложительным зарядом, окруженное отрицательными электрона­ми. В электрическом поле ядро притягивается в одну сторону, а электроны в другую. Орбиты или плотности вероятности элект­ронов (или какая-либо другая картина, используемая в кванто­вой механике) несколько искажаются (фиг. 10.4); центр тяжести отрицательных зарядов сместится и больше не будет совпадать с положительным зарядом ядра. Мы уже обсуждали такое рас­пределение заряда. Если взглянуть на него издалека, то подоб­ная нейтральная конфигурация в первом приближении эквива­лентна маленькому диполю.

Если поле не чересчур велико, естественно считать величину индуцированного дипольного момента пропорциональной полю. Иначе говоря, небольшое поле сместит заряды чуть-чуть, а более сильное поле раздвинет их дальше — пропорционально величине поля, пока смещение не станет чересчур большим.

Фиг 104 Распределение электронов атома в электрическом поле сдвигается - фото 8

Фиг 104 Распределение электронов атома в электрическом поле сдвигается - фото 9

Фиг. 10.4. Распределение электронов атома в электрическом поле сдвигается относительно ядра.

До конца этой главы мы будем считать, что дипольный мо­мент в точности пропорцио­нален полю.

Предположим теперь, что в каждом атоме заряды q раз­делены промежутком d, так что qd есть дипольный момент одного атома. (Мы пишем d, потому что d уже использовано для обозначения расстояния между пластинами.) Если в еди­нице объема имеется N атомов, то дипольный момент в еди­нице объема равен Nq d . Этот дипольный момент в единице объема мы запишем в виде вектора Р. Нет необходимости подчеркивать, что он лежит в направлении всех отдельных дипольных моментов, т. е. в направлении смещения за­рядов d:

5b Электричество и магнетизм - изображение 10

(10.4)

Вообще говоря, Р будет меняться в диэлектрике от точки к точке. Но в каждой точке Р пропорционален электрическому полю Е. Константа пропорциональности, которая определяется тем, насколько легко можно сместить электрон, зависит от сорта атомов в материале.

О том, что действительно определяет поведение этой констан­ты и степень ее постоянства для больших полей, а также о том, что происходит внутри разных материалов, мы поговорим позже. А пока мы просто предположим, что существует какой-то механизм, благодаря которому индуцируется дипольный момент, пропорциональный электрическому полю.

§ 3. Поляризационные заряды

Посмотрим теперь, что дает эта модель для конденсатора с диэлектриком. Рассмотрим сначала лист материала, в котором на единицу объема приходится дипольный момент Р. Полу­чится ли в результате в среднем какая-нибудь плотность заря­дов? Нет, если Р постоянен.

Если положительные и отрицательные заряды, смещенные относительно друг друга, имеют одну и ту же среднюю плот­ность, то сам факт их смещения не приводит к появлению сум­марного заряда внутри объема. С другой стороны, если бы Р в одном месте был больше, а в другом меньше, то это означало бы, что в некоторые области попало больше зарядов, чем отту­да вышло; тогда мы бы могли получить объемную плотность за­ряда. В случае плоского конденсатора предположим, что Р — величина постоянная, поэтому достаточно будет только посмот­реть, что происходит на поверхностях. На одной поверхности отрицательные заряды (электроны) эффективно выдвинулись на расстояние d, а на другой поверхности они сдвинулись внутрь, оставив положительные заряды снаружи на эффективном расстоянии d. Возникает, как показано на фиг. 10.5, поверх­ностная плотность зарядов, которую мы будем называть поляризационным зарядом.

5b Электричество и магнетизм - изображение 11

Этот заряд можно подсчитать следующим образом. Если пло­щадь пластинки равна А, то число электронов, которое ока­жется на поверхности, есть произведение А и N (числа электро­нов на единицу объема), а также смещения S, которое, как мы предполагаем, направлено перпендикулярно к поверхности. Полный заряд получится умножением на заряд электрона q e . Чтобы найти поверхностную плотность поляризационных за­рядов, индуцируемую на поверхности, разделим на А. Вели­чина поверхностной плотности зарядов равна

Но она равна как раз длине Р вектора поляризации Р [формула (10.4)]:

5b Электричество и магнетизм - изображение 12

Фиг. 10.5. Диэлектрик в однородном поле. Положительные заряды сместились на расстояние d относи­тельно отрицательных.

5b Электричество и магнетизм - изображение 13

(10.5)

Поверхностная плотность зарядов равна поляризации внутри материала. Поверхностный заряд, конечно, на одной поверх­ности положителен, а на другой отрицателен.

Предположим теперь, что наша пластинка служит диэлектри­ком в плоском конденсаторе. Пластины конденсатора также име­ют поверхностный заряд (который мы обозначим s своб, потому что заряды в проводнике могут двигаться «свободно» куда угодно). Конечно, это тот самый заряд, который мы сообщили конденсатору при его зарядке. Следует подчеркнуть, что s полсуществует только благодаря s своб. Если, разрядив конденсатор, удалить s своб, то s полтакже исчезнет, но он не стечет по проволо­ке, которой разряжают конденсатор, а уйдет назад внутрь ма­териала, за счет релаксации поляризации в диэлектрике.

5b Электричество и магнетизм - изображение 14

Теперь мы можем применить теорему Гаусса к поверхности S, изображенной на фиг. 10.1. Электрическое поле Е в диэлект­рике равно полной поверхностной плотности зарядов, деленной на e 0. Очевидно, что s поли s свобимеют разные знаки, так что

(10.6)

5b Электричество и магнетизм - изображение 15

Заметьте, что поле Е 0 между металлической пластиной и по­верхностью диэлектрика больше поля Е; оно соответствует только s своб. Но нас здесь интересует поле внутри диэлектрика, которое занимает почти весь объем, если диэлектрик заполняет почти весь промежуток между пластинами. Используя формулу (10.5), можно написать

Читать дальше
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




5b. Электричество и магнетизм отзывы


Отзывы читателей о книге 5b. Электричество и магнетизм, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
Большинство книг на сайте опубликовано легально на правах партнёрской программы ЛитРес. Если Ваша книга была опубликована с нарушениями авторских прав, пожалуйста, направьте Вашу жалобу на PGEgaHJlZj0ibWFpbHRvOmFidXNlQGxpYmtpbmcucnUiIHJlbD0ibm9mb2xsb3ciPmFidXNlQGxpYmtpbmcucnU8L2E+ или заполните форму обратной связи.
img img img img img