Ричард Фейнман - 5a. Электричество и магнетизм

Тут можно читать онлайн Ричард Фейнман - 5a. Электричество и магнетизм - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    5a. Электричество и магнетизм
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 5a. Электричество и магнетизм краткое содержание

5a. Электричество и магнетизм - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

5a. Электричество и магнетизм - читать онлайн бесплатно полную версию (весь текст целиком)

5a. Электричество и магнетизм - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Но вы скажете: «Уж не вечное ли это движение? Сперва го­ворилось, что воздух должен подниматься, а когда вы его под­няли, то одинаково убедительно принимаетесь доказывать, что ему положено падать». Нет, это не вечное движение. Когда по­ложение неустойчиво и теплый воздух вынужден подниматься, тогда, естественно, что-то должно его заместить. Не менее верно и то, что спускающийся холодный воздух был бы в состоянии энергетически заместить теплый воздух. Но поймите, что то, что спустилось вниз,— это уже не тот воздух, который был вна­чале. Давние рассуждения, в которых шла речь об изолирован­ном облаке, сперва подымавшемся, а затем спускающемся, содержали в себе какую-то загадку. Нужен был дождь, чтобы обеспечить спуск, а этот способ был мало правдоподобен. Но как только вы поняли, что к восходящему потоку воздуха приме­шан воздух, бывший вначале на той высоте, откуда началась тяга, термодинамические соображения покажут вам, что падение холодного воздуха, первоначально плававшего на больших высотах, тоже возможно. Это и объясняет картину активной грозы, представленную схематически на фиг. 9.9.

Фиг 910 Поздняя фаза грозовой ячейки Когда воздух доходит донизу из - фото 253

Фиг. 9.10, Поздняя фаза грозовой ячейки.

Когда воздух доходит донизу, из нижней части тучи начи­нает идти дождь. Вдобавок, достигнув земной поверхности, от­носительно холодный воздух растекается во все стороны. Значит, перед самой грозой начинается холодный ветер, предупреждаю­щий нас о предстоящей буре. Во время самой бури наблюдаются резкие и внезапные порывы ветра, облака клубятся и т. д. Но в основном сперва существует ток, текущий вверх, потом про­тивоток вниз — картина, вообще говоря, очень сложная.

В то же мгновение, когда начинаются осадки, возникает и противоток. И в тот же самый момент обнаруживаются электри­ческие явления. Но прежде чем описать молнию, мы закончим рассказом о том, что творится в грозовой ячейке через полчаса или, скажем, через час. Она выглядит так, как показано на фиг. 9.10. Тяга вверх прекратилась — больше нет теплого воз­духа, и поддерживать ее нечем. Какое-то время еще продолжа­ются осадки, последние капельки воды падают на землю, все становится спокойнее, хотя часть льдинок еще осталась в воздухе. На больших высотах ветры дуют в разные стороны, поэтому верх грозовой тучи обычно начинает принимать вид наковальни. Ячейке пришел конец.

§ 5. Механизм распределения зарядов

Теперь мы хотим обратиться к обсуждению самой важной для нас стороны дела — к возникновению электрических заря­дов. Разного рода эксперименты, включая полеты сквозь грозо­вой фронт (пилоты, совершающие их — истинные храбрецы!), выяснили, что распределение зарядов в грозовой ячейке напоминает изображенное на фиг. 9.11. Верхушка грозы заряжена положительно, а низ — отрицательно, за исключением неболь­шого участка положительных зарядов в нижней части тучи, при­чинившего немало забот исследователям. Никто не знает, поче­му он там появляется и насколько он важен, то ли это всего лишь вторичный эффект положительного дождя, то ли сущест­венная часть всего механизма. Если б этого не было, все выгля­дело бы значительно проще. Во всяком случае преимущест­венно отрицательный заряд внизу и положительный навер­ху — это как раз такое расположение полюсов батареи, которое может зарядить Землю отрицательно. Положительные заряды находятся в 6—7 км над Землей, где температура достигает -20°C,а отрицательные — на высоте 3—4 км, и температура там от 0 до -10°C.

Заряда нижней части тучи хватает на то, чтобы создать между ней и землей разность потенциалов в 20, 30 и даже 100 млн. в — несравненно больше, чем те 0,4 млн. в перепада, которые бывают между «небом» и Землей при ясном небе.

Фиг 911 Распределение электричества в созревшей грозовой ячейке Эти - фото 254

Фиг. 9.11. Распределение электричества в созревшей грозовой ячейке.

Эти огромные напряжения пробивают воздух и создают гигантский грозовой разряд. При пробое отрицательный заряд с нижней части тучи переносится зигзагами молнии на Землю.

А теперь мы в нескольких словах опишем строение молнии. Прежде всего имеется настолько большой перепад потенциалов, что воздух пробивается. Молния бьет между одной частью тучи и другой, или между одной тучей и другой, или между тучей и Землей. С каждой независимой вспышкой — с каждым ударом молнии, который вы видите, с небес низвергается 20—30 кулон электричества. Интересно, сколько же времени тратит туча на восстановление этих 20—30 кулон, уходящих с молнией? Это можно выяснить, измеряя вдали от тучи электрическое поле, вызываемое дипольным моментом тучи. При таких измерениях вы видите внезапный спад поля при ударе молнии, а затем экспо­ненциальный возврат к первоначальному его значению с ха­рактерной временной постоянной порядка 5 сек, немного меняю­щейся от случая к случаю. Значит, грозе достаточно 5 сек, чтобы восстановить весь свой заряд. Но это, конечно, не означает, что очередная молния ударит точно через 5 сек, потому что меняется и геометрия туч и другие факторы.

Фиг 912 Струя воды с электрическим полем созданным вблизи насадки шланга - фото 255

Фиг. 9.12. Струя воды с электри­ческим полем, созданным вблизи насадки шланга.

Вспышки следуют друг за другом нерегулярно, но существенно то, что возвраще­ние к начальным условиям всегда происходит примерно за 5 сек. Следовательно, в грозовой динамомашине течет ток при­мерно в 4 а. А это означает, что любая модель, придуманная для объяснения того, как грозовой вихрь генерирует электричество, должна быть очень мощной — это должна быть огромная быст­родействующая махина.

Прежде чем двинуться дальше, рассмотрим кое-что, почти наверняка не имеющее никакого отношения к излагаемому пред­мету, но тем не менее само по себе любопытное, так как это де­монстрирует влияние электрического поля на водяные капли. Мы говорим, что это может и не иметь отношения, потому что связано с опытом, который можно проделать в лаборатории со струйкой воды и который показывает довольно сильное действие электричества на капельки. В грозе же нет никаких водяных струй; там просто имеется туча сконденсированного льда и ка­пель воды. Так что вопрос о механизмах, действующих в грозе, по всей вероятности, никак не связан со всем тем, что вы увидите в том простом опыте, который мы хотим описать. Насадите на водопроводный кран шланг с суженным концом и направьте струю воды из него под крутым углом (фиг. 9.12). Вода забьет тонкой струйкой и, вероятно, начнет разбрызгиваться мелкими капельками. Если поперек струи навести электрическое поле (скажем, заряженной палочкой), то форма струи изменится. При слабом электрическом поле вы увидите, что струя разби­вается на несколько больших капель, а при сильном поле струя разбрызгивается на много-много мельчайших капелек, гораздо более мелких, чем прежде. У слабого электрического поля есть тенденция воспрепятствовать дроблению струи на капли, а сильное, напротив, стремится раздробить поток.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




5a. Электричество и магнетизм отзывы


Отзывы читателей о книге 5a. Электричество и магнетизм, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x