Ричард Фейнман - 4. Кинетика. Теплота. Звук

Тут можно читать онлайн Ричард Фейнман - 4. Кинетика. Теплота. Звук - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    4. Кинетика. Теплота. Звук
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 4. Кинетика. Теплота. Звук краткое содержание

4. Кинетика. Теплота. Звук - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

4. Кинетика. Теплота. Звук - читать онлайн бесплатно полную версию (весь текст целиком)

4. Кинетика. Теплота. Звук - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Это тоже очень трудная задача но мы всетаки решим ее Сначала нам придется - фото 4

Это тоже очень трудная задача, но мы все-таки решим ее. Сначала нам придется решить «подзадачу» (опять это один из тех случаев, когда, независимо от того как решается задача, окончательный результат запоминается легко, а вывод требует большого искусства). Предположим, что перед нами две стал­кивающиеся молекулы, обладающие разными массами; во из­бежание осложнений мы наблюдаем за столкновением из сис­темы их центра масс (ц. м.), откуда легче уследить за ударом молекул. По законам столкновений, выведенным из законов сохранения импульса и энергии, после столкновения молекулы могут двигаться только так, что каждая сохраняет величину своей первоначальной скорости, и изменить они могут только направление движения. Типичное столкновение выглядит так, как его изобразили на фиг. 39.3.

Фиг. 39. 3. Столкновение двух неодинаковых молекул, если смот­реть из системы центра масс.

Предположим на минутку, что мы наблюдаем столкновения, системы центра масс которых покоятся. Кроме того, надо предположить, что все молекулы движутся горизонтально. Конечно, после первого же столкнове­ния часть молекул будет двигаться уже под каким-то углом к исходному направлению. Иначе говоря, если вначале все молекулы двигались горизонтально, то спустя некоторое вре­мя мы обнаружим уже вертикально движущиеся молекулы. После ряда других столкновений они снова изменят направле­ние и повернутся еще на какой-то угол. Таким образом, если кому-нибудь и удастся сначала навести порядок среди моле­кул, то все равно они очень скоро разбредутся по разным на­правлениям и с каждым разом будут все больше и больше распыляться. К чему же это в конце концов приведет? Ответ: Любая пара молекул будет двигаться в произвольно выбранном направлении столь же охотно, как и в любом другом. После этого дальнейшие столкновения уже не смогут изменить распределе­ния молекул.

Что имеется в виду, когда говорят о равновероятном дви­жении в любом направлении? Конечно, нельзя говорить о вероятности движения вдоль заданной прямой — прямая слишком тонка, чтобы к ней можно было относить вероятность, а следует взять единицу «чего-нибудь». Идея заключается в том, что через заданный участок сферы с центром в точке столк­новения проходит столько же молекул, сколько через любой другой участок сферы. В результате столкновений молекулы распределяются по направлениям так, что любым двум равным по площади участкам сферы будут соответствовать равные ве­роятности (т. е. одинаковое число прошедших через эти участки молекул).

Между прочим, если мы будем сравнивать первоначальное направление и направление, образующее с ним какой-то угол 0, то интересно, что элементарная площадь на сфере единичного радиуса равна произведению 2p на sinqdq, или, что то же самое, на дифференциал cosq. Это означает, что косинус угла 9 между двумя направлениями с равной вероятностью принимает лю­бое значение между -1 и +1.

Теперь нам надо вспомнить о том, что имеется на самом деле; ведь у нас нет столкновений в системе центра масс, а сталки­ваются два атома с произвольными векторными скоростями v 1и v 2. Что происходит с ними? Мы поступим так: снова перей­дем к системе центра масс, только теперь она движется с «ус­редненной по массам» скоростью v ц.м. =(m 1 v 1 +m 2 v 2 )/(m 1 +m 2 ). Если следить за столкновением из системы центра масс, то оно будет выглядеть так, как это изображено на фиг. 39.3, только надо подумать об относительной скорости столкновения w. Относительная скорость равна v 1-v 2. Дело, следовательно, обстоит так: движется система центра масс, а в системе центра масс молекулы сближаются с относительной скоростью w; столк­нувшись, они движутся по новым направлениям. Пока все это происходит, центр масс все время движется с одной и той же скоростью без изменений.

Ну и что же получится в конце концов? Из предыдущих рассуждений делаем следующий вывод: при равновесии все направления, w равновероятны относительно направления дви­жения центра масс. Это означает, что в конце концов не будет никакой корреляции между направлением относительной ско­рости и движением центра масс. Если бы даже такая корреля­ция существовала вначале, то столкновения ее бы разрушили и она в конце концов исчезла бы полностью. Поэтому сред­нее значение косинуса угла между w и v ц.м.равно нулю. Это значит, что

< w· v ц.м.>=0. (39.19)

Скалярное произведение wv цмлегко выразить через v 1и v 2 Займемся сначала - фото 5

Скалярное произведение w·v ц.м.легко выразить через v 1и v 2:

Займемся сначала v 1·v 2; чему равно среднее v 1·v 2? Иначе го­воря, чему равно среднее проекции скорости одной молекулы на направление скорости другой молекулы? Ясно, что вероят­ности движения молекулы как в одну сторону, так и в проти­воположную одинаковы. Среднее значение скорости v 2 в любом направлении равно нулю. Поэтому и в направлении v 1среднее значение v 2тоже равно нулю. Итак, среднее значение v 1·v 2равно нулю! Следовательно, мы пришли к выводу, что среднее т 1 v 2 1 должно быть равно т 2 v 2 2 . Это значит, что средние кинети­ческие энергии обеих молекул должны быть равны:

1/ 2m 1v 2 1= 1/ 2m 2v 2 2. (39.21)

Если газ состоит из атомов двух сортов, то можно показать (и мы даже считаем, что нам удалось это сделать), что средние кинетические энергии атомов каждого сорта равны, когда газ находится в состоянии равновесия. Это означает, что тяжелые атомы движутся медленнее, чем легкие; это легко проверить, поставив эксперимент с «атомами» различных масс в воздушном желобе.

Теперь сделаем следующий шаг и покажем, что если в ящи­ке имеются два газа, разделенные перегородкой, то по мере достижения равновесия средние кинетические энергии атомов разных газов будут одинаковы, хотя атомы и заключены в разные ящики. Рассуждение можно построить по-разному. Например, можно представить, что в перегородке проделана маленькая дырочка (фиг. 39.4), так что молекулы одного газа проходят сквозь нее, а молекулы второго слишком велики и не пролезают.

Фиг 39 4 Два газа в ящике разделенном полупроницаемой перегородкой Когда - фото 6

Фиг. 39. 4. Два газа в ящике, разделенном полупроницаемой пере­городкой.

Когда установится равновесие, то в том отделе­нии, где находится смесь газов, средние кинетические энергии молекул каждого сорта сравняются. Но ведь в числе проник­ших сквозь дырочку молекул есть и такие, которые не потеря­ли при этом энергии, поэтому средняя кинетическая энергия молекул чистого газа должна быть равна средней кинетичес­кой энергии молекул смеси. Это не очень удовлетворительное доказательство, потому что ведь могло и не быть такой дырочки, сквозь которую пройдут молекулы одного газа и не смогут прой­ти молекулы другого.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




4. Кинетика. Теплота. Звук отзывы


Отзывы читателей о книге 4. Кинетика. Теплота. Звук, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x