LibKing » Книги » sci-phys » Ричард Фейнман - 2. Пространство. Время. Движение

Ричард Фейнман - 2. Пространство. Время. Движение

Тут можно читать онлайн Ричард Фейнман - 2. Пространство. Время. Движение - бесплатно полную версию книги (целиком). Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте LibKing.Ru (ЛибКинг) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
libking
  • Название:
    2. Пространство. Время. Движение
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.6/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Ваша оценка:

Ричард Фейнман - 2. Пространство. Время. Движение краткое содержание

2. Пространство. Время. Движение - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

2. Пространство. Время. Движение - читать онлайн бесплатно полную версию (весь текст целиком)

2. Пространство. Время. Движение - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать

Например, если нам нужно найти центр масс прямоуголь­ного треугольника с основанием D и высотой H (фиг. 19.2), то это делается следующим образом.

Фиг 192 Прямоугольный треугольник и прямой круговой конус образованный - фото 82

Фиг. 19.2. Прямоугольный тре­угольник и прямой круговой конус, образованный вращением этого треугольника.

Вообразите себе ось, про­ходящую вдоль H, и поверните треугольник на 360° вокруг этой оси. Это дает нам конус. Расстояние, которое проходит x-координата центра масс, равно 2 p х, а площадь области, кото­рая двигалась, т. е. площадь треугольника, равна 1 / 2 HD. Произведение расстояния, пройденного центром масс, на пло­щадь треугольника равно объему конуса, т. е. 1 / 3 p D 2 H. Таким образом, (2 p х)( 1 / 2 HD)= 1 / 3 p D 2 H, или x=D/3. Совершенно аналогично вращением вокруг второго катета или просто по соображениям симметрии находим, что у=Н/3. Вообще центр масс любого однородного треугольника находится в точке пере­сечения трех его медиан (линий, соединяющих вершину тре­угольника с серединой противоположной стороны), которая от­стоит от основания на расстоянии, равном 1/ 3длины каждой медианы.

Как это увидеть? Рассеките треугольник линиями, парал­лельными основанию, на множество полосок. Заметьте теперь, что медиана делит каждую полоску пополам, следовательно, центр масс должен лежать на медиане.

Возьмем теперь более сложную фигуру. Предположим, что требуется найти положение центра масс однородного полукруга, т. е. круга, разрезанного пополам. Где будет находиться центр масс в этом случае? Для полного круга центр масс расположен в геометрическом центре, но для полукруга найти его положе­ние труднее. Пусть r радиус круга, а x — расстояние центра масс от прямолинейной границы полукруга. Вращая его вокруг этого края как вокруг оси, мы получаем шар. При этом центр масс проходит расстояние 2 p х, а площадь полукруга равна 1/ 2pr 2(половине площади круга). Так как объем шара равен, конечно, 4pr 3/3, то отсюда находим

2 Пространство Время Движение - изображение 83

2 Пространство Время Движение - изображение 84

или

Существует еще другая теорема Паппа, которая фактически является частным случаем сформулированной выше теоремы, а потому тоже справедлива. Предположим, что вместо твердого полукруга мы взяли полуокружность, например кусок прово­локи в виде полуокружности с однородной плотностью, и хотим найти ее центр масс. Оказывается, что площадь, которая «заме­тается» плоской кривой при ее движении, аналогичном выше­описанному, равна расстоянию, пройденному центром масс, умноженному на длину этой кривой. (Кривую можно рассмат­ривать как очень узкую полоску и применять к ней предыдущую теорему.)

§ 3. Вычисление момента инерции

Рассмотрим теперь проблему определения момента инерции различных тел. Общая формула для нахождения момента инер­ции объекта относительно оси z имеет вид

Иными словами нужно сложить все массы умножив каждую из них на квадрат ее - фото 85

Иными словами, нужно сложить все массы, умножив каждую из них на квадрат ее расстояния до оси (z 2 i+y 2 i). Заметьте, что это верно даже для трехмерного тела, несмотря на то, что рас­стояние имеет такой «двумерный вид». Впрочем, в большинстве случаев мы будем ограничиваться двумерными телами.

В качестве простого примера рассмотрим стержень вращающийся относительно оси - фото 86

В качестве простого примера рассмотрим стержень, вра­щающийся относительно оси, проходящей через его конец и перпендикулярной к нему (фиг. 19.3).

Фиг. 19.3. Прямой стержень, вращающийся вокруг оси, прохо­дящей через один из его концов.

Нам нужно просуммировать теперь все массы умноженные на квадраты расстояния х - фото 87

Нам нужно просуммиро­вать теперь все массы, умноженные на квадраты расстояния х (в этом случав все у — нулевые). Под суммой, разумеется, я имею в виду интеграл от x 2 , умноженный на «элементики» мас­сы. Если мы разделим стержень на кусочки длиной dx, то соот­ветствующий элемент массы будет пропорционален dx, а если бы dx составляло длину всего стержня, то его масса была бы равна М. Поэтому

Размерность момента инерции всегда равна массе, умноженной на квадрат длины, так что единственная существенная величина, которую мы вычислили, это множитель 1/ 3.

А чему будет равен момент инерции I, если ось вращения проходит через середину стержня? Чтобы найти его, нам снова нужно взять интеграл, но уже в пределах от - 1/ 2L до + 1/ 2 L. Заметим, однако, одну особенность этого случая. Такой стер­жень с проходящей через центр осью можно представлять себе как два стержня с осью, проходящей через конец, причем масса каждого из них равна М/2, а длина равна L/2. Моменты инер­ции двух таких стержней равны друг другу и вычисляются по формуле (19.5). Поэтому момент инерции всего стержня равен

Таким образом стержень гораздо легче крутить за середину чем за конец Можно - фото 88

Таким образом, стержень гораздо легче крутить за середину, чем за конец.

Можно, конечно, продолжить вычисление моментов инер­ции других интересующих нас тел. Но поскольку такие расчеты требуют большого опыта в вычислении интегралов (что очень важно само по себе), они как таковые не представляют для нас большого интереса. Впрочем, здесь имеются некоторые очень интересные и полезные теоремы. Пусть имеется какое-то тело и мы хотим узнать его момент инерции относительно какой-то оси. Это означает, что мы хотим найти его инертность при вра­щении вокруг этой оси. Если мы будем двигать тело за стер­жень, подпирающий его центр масс так, чтобы оно не повора­чивалось при вращении вокруг оси (в этом случае на него не действуют никакие моменты сил инерции, поэтому тело не будет поворачиваться, когда мы начнем двигать его), то для того, чтобы повернуть его, понадобится точно такая же сила, как если бы вся масса была сосредоточена в центре масс и

момент инерции был бы просто равен I 1 =MR 2 ц.м. , где R ц. м .— расстояние от центра масс до оси вращения. Однако формула эта, разумеется, неверна. Она не дает правильного момента инер­ции тела. Ведь в действительности при повороте тело вращается. Крутится не только центр масс (что давало бы величину I 1), само тело тоже должно поворачиваться относительно центра масс. Таким образом, к моменту инерции I 1нужно добавить I ц— момент инерции относительно центра масс. Правильный ответ состоит в том, что момент инерции относительно любой оси равен

Читать дальше
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




2. Пространство. Время. Движение отзывы


Отзывы читателей о книге 2. Пространство. Время. Движение, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
Большинство книг на сайте опубликовано легально на правах партнёрской программы ЛитРес. Если Ваша книга была опубликована с нарушениями авторских прав, пожалуйста, направьте Вашу жалобу на PGEgaHJlZj0ibWFpbHRvOmFidXNlQGxpYmtpbmcucnUiIHJlbD0ibm9mb2xsb3ciPmFidXNlQGxpYmtpbmcucnU8L2E+ или заполните форму обратной связи.
img img img img img