Александр Филиппов - Многоликий солитон

Тут можно читать онлайн Александр Филиппов - Многоликий солитон - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Наука, гл. ред. физ.-мат. лит., год 1990. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Многоликий солитон
  • Автор:
  • Жанр:
  • Издательство:
    Наука, гл. ред. физ.-мат. лит.
  • Год:
    1990
  • Город:
    Москва
  • ISBN:
    5-02-014405-3
  • Рейтинг:
    4.22/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Александр Филиппов - Многоликий солитон краткое содержание

Многоликий солитон - описание и краткое содержание, автор Александр Филиппов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Одно из наиболее удивительных и красивых волновых явлений — образование уединенных волн, или солитонов, распространяющихся в виде импульсов неизменной формы и во многом подобных частицам. К солитонным явлениям относятся, например, волны цунами, нервные импульсы и др.

В новом издании (1-е изд. — 1985 г.) материал книги существенно переработан с учетом новейших достижений.

Для школьников старших классов, студентов, преподавателей.

Многоликий солитон - читать онлайн бесплатно полную версию (весь текст целиком)

Многоликий солитон - читать книгу онлайн бесплатно, автор Александр Филиппов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Еще одно существенное отличие нашей грубой модели от идеальной бесконечной цепочки связано с отражением волн от границ. Это происходит примерно так, как указано на рис. 5.3, где изображены графики отклонений грузиков или скрепок в последовательные моменты времени. Горбику соответствует смещение грузиков в положительном направлении оси х , впадине — в отрицательном. Когда горбик подходит к стенке, крайняя, закрепленная пружина начинает тянуть крайний грузик влево, он тянет соседние грузики, и в результате направо побежит впадина.

Если вместо продольных движений грузиков изучать их поперечные движения (в направлении оси у в плоскости ху ), то графики рис. 5.3 изображают форму поперечного импульса в цепочке. Наблюдать такие импульсы и волны можно с помощью мягкой и достаточно длинной резиновой трубки. Проделать соответствующие простые опыты несложно, и читатель может проявить здесь фантазию и изобретательность.

В резиновой трубке или ленте, закрепленных на концах, легко возбуждать стоячие волны . Особенно легко возбуждается колебание, в котором нетрудно узнать «полусинусоиду». При этом все точки колеблются в одинаковой фазе, и амплитуда колебаний максимальна в середине («пучность» стоячей волны). Длина такой стоячей волны равна удвоенной длине ленты *). Труднее возбудить колебание, в котором остается в покое середина («узел» стоячей волны). На всей ленте при этом укладывается «период синусоиды», и длина волны равна длине ленты. Чтобы возбудить такое колебание, нужно оттянуть ленты в противоположные стороны на равных расстояниях от краев, удерживая середину в покое. Легче наблюдать такую волну на приборчике со скрепками. Возбудив какие-либо колебания в этой цепочке (лучше всего это делать быстрым, легким щелчком по скрепке), можно просто остановить среднюю скрепку. При этом «выживет» колебание, в котором средняя скрепка покоится.

*) Ниже мы увидим, что синусоидальную стоячую волну можно представить в виде суммы двух одинаковых волн, бегущих в противоположных направлениях. Длина стоячей волны, по определению, совпадает с длиной этих бегущих волн.

Стоячие волны разных типов, в которых на всей длине ленты укладывается разное число N полуволн, называются нормальными модами колебаний (или просто модами ; это слово происходит от латинского modus, т. е. образ, способ). Моды с малыми значениями N называются низшими , а с большими — высшими . Моду с N = 1 естественно называть основной, она возбуждается легче всего. При произвольном начальном возбуждении нашей системы возбуждаются разные моды, однако высшие моды не только труднее возбуждаются, но и быстрее затухают из-за трения. Потому-то их и труднее наблюдать.

Понять, что такое моды и как они себя ведут, проще всего на модели одномерной цепочки конечной длины с закрепленными концами. Сначала посмотрим, как колеблется простейшая цепочка из двух атомов. Пусть их равновесные положения равны x 0 1= α и x 0 2= 2α, а крайние пружинки закреплены в точках x 0 0= 0 и x 0 3= 3α (см. рис. 5.1). Легко составить уравнения движения атомов.

Прежде чем это сделать, введем одно небольшое новшество в обозначениях. До сих пор нам приходилось иметь дело лишь с производными по времени, и мы их обозначали штрихом. При изучении колебаний в распределенных системах встречаются не только производные по времени, с помощью которых записываются скорости и ускорения отдельных частичек, но и производные по координате. Они характеризуют изменение отклонения при переходе от одной частицы к другой в один и тот же момент времени. Поэтому условимся обозначать производную по времени не штрихом, а точкой, а штрих сохраним для производной по координате. Теперь мы будем обозначать скорость n -гo грузика как а его ускорение как Уравнения движения грузиков можно тогда написать в - фото 109, а его ускорение — как Уравнения движения грузиков можно тогда написать в виде Действительно сила - фото 110.

Уравнения движения грузиков можно тогда написать в виде

Действительно сила с которой левая пружина тянет первый грузик равна - фото 111

Действительно, сила, с которой левая пружина тянет первый грузик, равна произведению модуля упругости k на удлинение пружины y 1, и при y 1 картинка 112 0 эта сила направлена в отрицательном направлении оси х . Так получается член ky 1*). Удлинение правой пружины равно ( y 2- y 1), и она тянет грузик с силой k( y 2- y 1). Это дает второй член в правой части первого уравнения. Точно так же находим силу, действующую на второй грузик.

*) Предполагается, что упругие свойства пружины соответствуют закону Гука. Нелинейность зависимости силы отклонения вводится с помощью других, дополнительных источников силы.

На первый взгляд может показаться, что решить эти уравнения очень сложно. Однако они линейны, а это значит, что достаточно найти лишь некоторый запас решений. Их линейные комбинации, возможно, и дадут самое общее решение.

Для начала попробуем получить хоть какие-нибудь решения. В этом нам поможет физическая интуиция. Действительно, вслед за Ньютоном мы представляем себе простейшую бегущую волну как процесс распространения гармонического колебания от одной частицы к другой. Тогда стоячая волна — это просто установившиеся колебания всех частичек с разными амплитудами. Сделаем простейшее предположение: допустим, что все частицы колеблются гармонически и притом с одинаковой частотой ω, и посмотрим, что отсюда следует.

Для гармонических колебаний ускорение пропорционально отклонению, т. е. картинка 113= -ω 2 y 1 и ω 2 y 2 Подставляя это в уравнения 51 получаем простую линейную - фото 114 = -ω 2 y 2 . Подставляя это в уравнения (5.1), получаем простую линейную систему уравнений для y 1 и y 2:

Здесь ω 0 2 km а ω не определенная пока частота наших гипотетических - фото 115

Здесь ω 0 2= k/m , а ω — не определенная пока частота наших гипотетических колебаний.

Ясно, что у этой системы уравнений относительно неизвестных yy 2 есть неинтересное решение y 1 = y 2= 0. Пусть y 1 картинка 1160. Тогда, выражения y 2через y 1из первого уравнения и подставляя полученное выражение во второе уравнение, найдем, что должно выполняться условие

Так как y 1 0 то выражение в квадратных скобках должно быть равно нулю - фото 117

Так как y 1 0 то выражение в квадратных скобках должно быть равно нулю Решая - фото 1180, то выражение в квадратных скобках должно быть равно нулю *). Решая квадратное уравнение для ω 2, определяем два возможных значения частоты

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Александр Филиппов читать все книги автора по порядку

Александр Филиппов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Многоликий солитон отзывы


Отзывы читателей о книге Многоликий солитон, автор: Александр Филиппов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x