Александр Филиппов - Многоликий солитон
- Название:Многоликий солитон
- Автор:
- Жанр:
- Издательство:Наука, гл. ред. физ.-мат. лит.
- Год:1990
- Город:Москва
- ISBN:5-02-014405-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Филиппов - Многоликий солитон краткое содержание
Одно из наиболее удивительных и красивых волновых явлений — образование уединенных волн, или солитонов, распространяющихся в виде импульсов неизменной формы и во многом подобных частицам. К солитонным явлениям относятся, например, волны цунами, нервные импульсы и др.
В новом издании (1-е изд. — 1985 г.) материал книги существенно переработан с учетом новейших достижений.
Для школьников старших классов, студентов, преподавателей.
Многоликий солитон - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Замечательно простое объяснение аномальной дисперсии предложил немецкий физик В. Зельмейер (1871 г.). Он предположил, что в молекулах вещества возможны «внутренние» колебания с собственной частотой ω е — «молекулярный маятник» *) и что поглощение происходит вследствие резонансного возбуждения этих колебаний, т. е. когда частота падающего света ω близка к частоте колебаний молекул. Отсюда Зельмейер нашел аномальную зависимость показателя преломления от частоты при частоте, близкой к ω е .
Теория Зельмейера, описывающая взаимодействие волн с «резонирующей» средой, была разработана более полно и уточнена в работах Кельвина, Гельмгольца, Лоренца, Друде и других. Кельвин предложил простую модель распространения света в веществе. Он предположил, что к тяжелым грузикам ньютоновой модели (рис. 5.1) прикреплены упругими пружинками очень легкие грузики. Тогда поглощение и дисперсия света определяются взаимодействием световой волны с этими легкими грузиками. Лоренц и Друде поняли, что их надо отождествить со связанными электронами, и разработали довольно убедительную теорию поглощения и дисперсии, объясняющую основные опытные факты.
В заключение этой короткой экскурсии в оптику надо отметить, что точное описание дисперсии в действительности требует применения квантовой теории. Это было сделано в первой половине нашего века, но основная идея объяснения этого любопытного и важного явления родилась, как мы видели, очень давно. Обо всей этой истории можно было бы написать увлекательную повесть, но нас давно ждут солитоны.
*) Двумя годами ранее подобную модель рассмотрел Максвелл, который не опубликовал свои результаты.
Дисперсия волн на воде
Вода примером служит нам, примером...
В. МюллерДисперсия играет огромную роль в жизни солитонов. Поэтому нам нужно познакомиться и с другими ее видами. Особенно ярко проявляются зависимость скорости распространения волн от их длины для волн на поверхности воды. Это было известно уже Ньютону. Теорема 37 третьей книги «Начал» гласит: «Скорость волн пропорциональна корню квадратному из длины их». После этого Ньютон в задаче 10 вычисляет скорость волны, сопоставляя вертикальным колебаниям частиц воды качания маятника с длиной l = ¼λ. За время одного качания Т волна сдвигается на расстояние λ, откуда v = (λ/ Т ) = . Хотя это лишь приближенное соотношение, приближение получилось довольно неплохое. Правильное выражение с учетом кругового движения частиц воды есть v =
. Сразу заметим, что с такой скоростью распространяются волны лишь на «глубокой воде», когда глубина h много больше длины волны. В противоположном предельном случае «мелкой воды», когда h
λ, скорость волны зависит лишь от глубины: v =
.
С точностью до числовых множителей эти формулы можно получить из соображений размерности и простых физических представлений о природе распространения волны. Скорость v может зависеть от g , λ, h , а также от плотности жидкости ρ и от амплитуды волны. Так как размерность массы содержится только в ρ, то сразу ясно, что скорость не зависит от плотности. (Это можно также понять, просто вспомнив, что возвращающая сила, действующая на частичку воды, пропорциональна ее массе. В уравнении движения Ньютона эта масса сокращается, как и в случае маятника.)
Простейшие наблюдения указывают на то, что скорость не зависит от амплитуды. Положив поэтому v = dg α λ b h c и сравнивая размерности левой и правой частей, находим
v = d (h/ λ) c.
Здесь показатель с и число d соображениями размерности не определяются. Однако мы знаем, что при распространении колебаний в движение вовлекаются лишь слои воды, расположенные на глубине, меньшей длины волны (амплитуду считаем малой). Это значит, что при достаточно большом расстоянии h от поверхности до дна величина h не играет никакой роли, т. е. надо положить с = 0. В противоположном предельном случае, когда h λ, скорость не должна зависеть от длины волны λ, так как размеры траекторий совершающих колебания частиц воды не могут превышать h (сравните с длинной волной в цепочке атомов). Мы заключаем, что для мелкой воды надо взять с = ½.
В точной теории можно получить формулу, пригодную при любом соотношении между h и λ. Из нее следует, что при возрастании длины волны скорость сначала растет, но при λ 2π h этот рост замедляется и скорость приближается к максимальному, или «критическому» значению v к=
. Полезно познакомиться с приближенными выражениями для скорости в пределе коротких и длинных волн

Зависимость скорости от длины волны для длинных волн на мелкой воде удивительно напоминает соотношение между v и λ для длинных волн в решетке атомов. Действительно, воспользовавшись тем, что при малых α можно приближенно положить sin α α - α З/6, легко получить приближение для соотношения (5.17) при λ
α :

Отсюда ясно, что дисперсия волн на мелкой воде такая же, как для волн в решетке атомов, причем, глубина h играет роль расстояния между атомами.
Термин «мелкая вода» весьма условен. Для длинных волн, возникающих при землетрясениях в океане, средняя глубина океана (около 5 км) уже оказывается достаточно малой, можно сказать, что для них океан мелкий. Такие волны, известные под названием «цунами», можно считать весьма типичными и чрезвычайно опасными солитонами. Мы познакомимся с ними в следующей части, а сейчас только отметим, что диапазон реально наблюдаемых скоростей волн очень велик. В океане при длине волны 5 км это v =
800 км/ч. В кювете для обработки фотографий при глубине 0,5 см — примерно 20 см/с. Такую скорость легко измерить, достаточно резко толкнуть кювету, чтобы по ней побежало микроцунами. Легко создать и условия, при которых нужно пользоваться «глубоководной» формулой для скорости. Любознательный читатель может проделать множество несложных опытов, запасясь секундомером и терпением. При проверке «глубоководной» формулы необходимо учесть, что при малых (меньше 5 см) длинах волн начинают сказываться силы поверхностного натяжения, которыми мы до сих пор пренебрегали.
Интервал:
Закладка: