Александр Филиппов - Многоликий солитон

Тут можно читать онлайн Александр Филиппов - Многоликий солитон - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Наука, гл. ред. физ.-мат. лит., год 1990. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Многоликий солитон
  • Автор:
  • Жанр:
  • Издательство:
    Наука, гл. ред. физ.-мат. лит.
  • Год:
    1990
  • Город:
    Москва
  • ISBN:
    5-02-014405-3
  • Рейтинг:
    4.22/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Александр Филиппов - Многоликий солитон краткое содержание

Многоликий солитон - описание и краткое содержание, автор Александр Филиппов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Одно из наиболее удивительных и красивых волновых явлений — образование уединенных волн, или солитонов, распространяющихся в виде импульсов неизменной формы и во многом подобных частицам. К солитонным явлениям относятся, например, волны цунами, нервные импульсы и др.

В новом издании (1-е изд. — 1985 г.) материал книги существенно переработан с учетом новейших достижений.

Для школьников старших классов, студентов, преподавателей.

Многоликий солитон - читать онлайн бесплатно полную версию (весь текст целиком)

Многоликий солитон - читать книгу онлайн бесплатно, автор Александр Филиппов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Кроме того, величина v , полученная Ньютоном, сильно расходилась с наблюдаемым значением *). Это было известно Ньютону, но его объяснение этого расхождения нельзя признать ни понятным, ни убедительным. Эта трудность только усилилась после опытов Хладни, который выяснил, что формула Ньютона сильно расходится с опытом и для других газов. Bычислим по формуле Ньютона скорость v для воздуха. Так как р /ρ = гT , где г — газовая постоянная, а Т — температура, то для воздуха при Т = 273 К = 0 0С получаем v картинка 179 280 м/с вместо 332 м/с.

*) Первое точное измерение скорости звука в воздухе было сделано в коллективной работе членов Парижской академии наук в 1738 г. Измерялось время, за которое звук пушечного выстрела проходит 30 км. Чтобы исключить влияние ветра, выстрелы производились одновременно из двух пушек, удаленных друг от друга на 30 км.

Правильное объяснение этому расхождению нашел Лаплас, заметивший, что при прохождении звуковой волны температура воздуха в местах сгущения и разрежения различна, и законом Бойля—Мариотта пользоваться нельзя. Вместо этого Лаплас предположил, что изменения состояния газа в звуковой волне происходят столь быстро, что тепло не успевает передаваться от нагревшихся сжатых участков к охладившимся разреженным, т. е. процесс происходит адиабатически **). Правильность его объяснения оспаривалась еще лет тридцать. Тем не менее общая теория волновых процессов уже в начале века твердо стояла на ногах и быстро завоевывала новые области для своих приложений.

**) См. книгу: Смородинский Я. А. Температура. — 2-e изд.— М.: Наука, 1987. — Библиотечка «Квант», вып. 12.

Особенно важно это было для волновой теории света. В работах Френеля волновая теория была настолько основательно разработана, что успешно объясняла не только явления, известные до ее победы, но и подсказывала новые. Единственная неудача постигла волновую теорию в объяснении явлений дисперсии света . Как и в теории звука, в оптике Френеля скорость волны могла изменяться в разных средах, но зависимости скорости от длины волны в одной среде не получалось. Пуассон даже после описанных в ч. 1 опытов сомневался в правильности теории Френеля. Его главное возражение как раз было связано с проблемой дисперсии. В ответе Пуассону Френель указал на молекулярную структуру вещества как на возможный источник дисперсии. К сожалению, ранняя смерть не позволила Френелю развить эту идею, но ее подхватил Коши.

Дисперсия волн в цепочке атомов

Связь дисперсии с атомной структурой проще всего понять в нашей пружинной модели. Хотя при этом речь идет о звуковых, а не о световых волнах, суть дела одна и та же. Эту мысль и развил Коши. Найдем вслед за ним дисперсионную формулу для волн в цепочке «атомов», соединенных пружинками. Вспомнив то, что мы знаем о связи дискретной цепочки со сплошным стержнем, попробуем сразу написать решение всех уравнений (5.8) в виде бегущей волны ( Если как это делалось раньше заменить nα на х и y n t на y n t х - фото 180):

Если как это делалось раньше заменить nα на х и y n t на y n t х то - фото 181

Если, как это делалось раньше, заменить на х и y n( t ) на y n( t , х ), то получится знакомая синусоидальная бегущая волна. Ее скорость v определяется из условия постоянства фазы (ω t - 2π х /λ). Поэтому скорость v называют фазовой скоростью . Если двигаться со скоростью v , то волна будет казаться неподвижной.

Так как ω 2 y n то из 58 следует простое уравнение С помощью известной формулы - фото 182= -ω 2 y n, то из (5.8) следует простое уравнение

С помощью известной формулы для преобразования суммы синусов двух углов в - фото 183

С помощью известной формулы для преобразования суммы синусов двух углов в произведение легко найти, что для синусоидальной волны y n+1 + y n-1= Многоликий солитон - изображение 184.

Подставляя это в уравнение (5.15), легко увидеть, что оно выполнено сразу для всех n , если

Это и есть дисперсионная формула Коши Если длина волны много больше расстояния - фото 185

Это и есть дисперсионная формула Коши. Если длина волны много больше расстояния между атомами, т. е. картинка 186, то sin (π α /λ) картинка 187π α /λ и ω картинка 188 2πω 0( α /λ). При этом дисперсия исчезает, так как скорость не зависит от λ: v (λ) = ωλ/2π картинка 189 α ω 0= картинка 190= v . Этот результат мы уже получили раньше при переходе к «непрерывному» пределу (см. формулу (5.14)). Если длина волны сравнима с расстоянием между атомами, то скорость зависит от λ:

С уменьшением λ она уменьшается Заметим что нет смысла рассматривать длины - фото 191

С уменьшением λ она уменьшается. Заметим, что нет смысла рассматривать длины волн, меньшие 2 α . Понять это легко, если вспомнить, что наблюдать мы можем лишь движения частиц, а не мысленно проведенные через их отклонения синусоиды (см. рис. 5.5). С учетом этого ограничения скорость убывает при уменьшении длины волны от значения v до значения (2 v /π).

Дисперсионную формулу (5.16) можно получить и из найденного нами раньше выражения для частот стоячих волн в цепочке конечной длины l (см. (5.9)). Для этого заметим, что длина волны в моде с номером М равна λ М = 2(N + 1) α / М = 2 l / М , где М = 1, ..., N . Дисперсии не было бы, если бы соответствующие частоты ω М были пропорциональны М . Как мы знаем, такой пропорциональности для больших М нет. Отсюда и возникает зависимость скорости v от λ при малых длинах волн и больших частотах. Выражая правую часть формулы (5.9) через λ М , получаем соотношение Коши (5.16) между ω М и λ М .

Плавные синусоидальные кривые, огибающие стоячие волны (5.7), можно получить, заменив в формуле (5.7) на х :

Это выражение описывает и стоячие волны в упругом стержне При этом λ М - фото 192

Это выражение описывает и стоячие волны в упругом стержне. При этом λ М принимает значения λ М = 2 l/M , где M может неограниченно возрастать ( М = 1, 2, 3, ...). Значения частот картинка 193получаются из дисперсионной формулы (5.16), если заменить в ней sin (π α /λ) на π α /λ (вспомните, что в пределе непрерывной среды α → 0):

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Александр Филиппов читать все книги автора по порядку

Александр Филиппов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Многоликий солитон отзывы


Отзывы читателей о книге Многоликий солитон, автор: Александр Филиппов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x