LibKing » Книги » sci-zoo » Александр Лаздин - Электричество в жизни рыб

Александр Лаздин - Электричество в жизни рыб

Тут можно читать онлайн Александр Лаздин - Электричество в жизни рыб - бесплатно полную версию книги (целиком). Жанр: sci-zoo, издательство Наука, год 1977. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте LibKing.Ru (ЛибКинг) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Александр Лаздин - Электричество в жизни рыб
  • Название:
    Электричество в жизни рыб
  • Автор:
  • Жанр:
  • Издательство:
    Наука
  • Год:
    1977
  • ISBN:
    нет данных
  • Рейтинг:
    3.77/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Ваша оценка:

Александр Лаздин - Электричество в жизни рыб краткое содержание

Электричество в жизни рыб - описание и краткое содержание, автор Александр Лаздин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга посвящена интересному, по малоизученному явлению — способности рыб генерировать, воспринимать и использовать электрические поля в целях ориентации и общения. В книге показано, что в ряде случаев электрическая информация играет в жизни рыб более важную роль, чем акустическая и оптическая. Большое внимание авторы уделяют практическому использованию биоэлектрических процессов в бионике и промышленном рыболовстве.

Электричество в жизни рыб - читать онлайн бесплатно полную версию (весь текст целиком)

Электричество в жизни рыб - читать книгу онлайн бесплатно, автор Александр Лаздин
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать

Электрический сом — придонная пресноводная рыба, обитающая в тропических и субтропических водоемах Африки. Длина его достигает 60—90 см; форма тела — вальковидная. Эта рыба — единственный электрический вид среди сомообразных. Электрическое поле, создаваемое сомом, примерно в 2—2,5 раза больше длины самой рыбы. Располагается оно в горизонтальной плоскости. В зоне действия поля на расстоянии 20—40 см от сома жертва начинает непроизвольно двигаться к нему (так называемая анодная реакция). Вблизи рыбы напряжение поля достигает 350 В, а мощность отдельного импульса — 30 Вт.

Как и электрический угорь, электрический сом — типичный ночной хищник Однако в отличие от угря сом не имеет электролокационной системы и ведет активную охоту, т. е. не подстерегает добычу, а ищет ее. С наступлением сумерек он начинает медленно плавать, ощупывая усиками находящиеся вблизи предметы. Малейшее колебание воды около сома или сотрясение дна вызывает у него разрядную деятельность.

Сом во время поиска генерирует мощные разряды, с помощью которых вспугивает затаившуюся добычу и заставляет ее выплывать из укрытия. Сом обнаруживает и «оценивает» рыбу по создаваемым ею потокам воды, используя органы чувств боковой линии — специализированной системы у рыб, воспринимающей гидромеханические колебания. Приблизившись к добыче на расстояние в несколько сантиметров, он бросается в атаку, сопровождая ее разрядами, характер которых зависит от величины рыбы.

Кроме того, на определенном расстоянии жертва стимулирует вкусовые рецепторы сома, что заставляет работать его электрические органы в новом режиме.

Электрические скаты и американские звездочеты — морские сильноэлектрические рыбы — образуют мощные электрические поля. Электрические скаты — хрящевые рыбы Длина их тела колеблется от 30 до 180 см. Американские звездочеты — представители костистых рыб — достигают 1,2—1,5 м. Электрические скаты обитают в основном в Мраморном и Средиземном морях, а также у берегов Индийского океана, звездочеты — вдоль Атлантического и Тихоокеанского побережий на юге Северной Америки. И те и другие — типичные донные хищники. Обычно они ожидают приближения жертвы, лежа на дне. Звездочеты зарываются в песок, оставляя в воде только глаза. Если жертва проплывет над скатом или звездочетом на расстоянии 1 м, хищники поражают ее разрядами электрического тока. Этому способствует особое строение и расположение их электрических органов, образующих вертикальные электрические поля.

В отличие от пресноводных сильноэлектрических рыб электрические скаты и американские звездочеты образуют биоэлектрические поля с помощью импульсов относительно невысокого внешнего напряжения, но большой силы тока (от 40 до 60 В при 50—60 А). Это связано с тем, что в морской воде импульсы большой силы тока распространяются лучше, чем импульсы высокого напряжения, но слабой силы Мощность отдельных импульсов электрических скатов достигает нескольких киловатт. Такие разряды оказывают весьма сильное воздействие и на человека.

Наблюдения показали, что момент разряда электрического ската совпадает с его броском на жертву. Пищу ската составляют довольно крупные и быстро плавающие рыбы (ставрида, кефаль), а также ракообразные. Поэтому добыть их скат может только с помощью электрического оружия Электрическими разрядами скат отпугивает своих соперников и нападающих на него хищников, например акул Необыкновенные свойства, которыми природа наделила сильноэлектрических рыб, дают им в борьбе за существование большое преимущество.

Слабоэлектрические рыбы излучают относительно слабые электрические сигналы. Долгое время было непонятно назначение их электрических органов Однако в 1958 г. английский ученый Г. Лиссман, используя новейшую электронную технику, установил, что они применяют свои электрические поля для ориентации и общения. После работ Лиссмана внимание исследователей сосредоточилось на способности рыб воспринимать и анализировать электрические свойства объектов в окружающей среде. Неожиданным стало открытие, что большинство видов рыб (не только электрических!) способно генерировать, воспринимать и применять электрические поля в целях сигнализации.

Изучение механизмов, которые рыбы применяют для генерации и восприятия электрических полей, характеристик этих полей имеет большое научное и практическое значение. Данные исследований могут быть использованы в медицине, рыбном хозяйстве и бионике.

Электрогенераторы у рыб

Об электрических особенностях сильноэлектрических рыб человек знает давно. Наскальные древнеегипетские рисунки и начертания некоторых египетских иероглифов донесли до нас изображение электрического сома. Древнегреческим ученым был известен таинственный скат, обитающий у берегов Средиземного моря. Аристотель писал, что эта рыба «заставляет цепенеть животных, которых она хочет поймать, пересиливая их силой удара, живущего у нее в теле». Врачи Древнего Рима использовали удары скатов для лечения нервных заболеваний.

Связь этих загадочных явлений с электричеством была установлена только в XVIII в. М. Адансоном. В XVIII—XIX вв. некоторые физики и физиологи использовали электрических рыб в качестве источников электрического тока. Так, А. Гумбольдт работал с электрическим угрем, Д. Реймон и М. Фарадей — с электрическими сомом и скатом В то время изучением электрических рыб занимались многие исследователи, среди них особое место принадлежало английскому физику Г. Кавендишу, впервые замерившему электрическое поле ската.

Исследования электрических явлении в живых тканях открыли в физике эру электричества В 1791 г. А. Гальвани выдвинул предположение, что каждое мышечное волокно представляет собой своеобразную лейденскую банку, заряженную электричеством. «Электричество содержится если не во всех, то во всяком случае в очень многих частях животного»,— писал Гальвани в «Трактате о силах электричества при мышечном движении».

Однако экспериментальные доказательства того, что в живых тканях имеется электричество, были получены лишь в 1832 г. Эта заслуга принадлежит Фарадею. Свои опыты он проводил на мраморном электрическом скате.

Во времена Фарадея предполагалось, что существует обыкновенное электричество (или электростатическое), получаемое в результате трения некоторых предметов; гальваническое (химическое), воздействующее на нервно-мышечные препараты и вызывающее нагревание проводников, разложение солей, кислот, щелочей; термоэлектричество, возникающее в участках проводников с разными температурами, а также в местах спайки неоднородных проводников; магнитоэлектричество, появляющееся при пересечении магнитных полей замкнутыми проводниками, и, наконец, «животное» электричество — биоэлектричество, присущее некоторым рыбам и воздействующее на расстоянии на других животных Фарадей доказал, что биоэлектричество ничем не отличается от других видов электричества. Сопоставив физические и химические действия, производимые ими, он заключил, что отдельные виды электричества тождественны по своей природе, каков бы ни был их источник. Явления, присущие разным видам электричества, отличаются не по своей природе, а лишь количественно. Это означает, что никаких особых свойств, присущих «животному» электричеству, нет.

Читать дальше
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать


Александр Лаздин читать все книги автора по порядку

Александр Лаздин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Электричество в жизни рыб отзывы


Отзывы читателей о книге Электричество в жизни рыб, автор: Александр Лаздин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
Большинство книг на сайте опубликовано легально на правах партнёрской программы ЛитРес. Если Ваша книга была опубликована с нарушениями авторских прав, пожалуйста, направьте Вашу жалобу на PGEgaHJlZj0ibWFpbHRvOmFidXNlQGxpYmtpbmcucnUiIHJlbD0ibm9mb2xsb3ciPmFidXNlQGxpYmtpbmcucnU8L2E+ или заполните форму обратной связи.
img img img img img