LibKing » Книги » sci_chem » М. Дроздова - Неорганическая химия

М. Дроздова - Неорганическая химия

Тут можно читать онлайн М. Дроздова - Неорганическая химия - бесплатно ознакомительный отрывок. Жанр: Chem, издательство Array Литагент «Научная книга», год 2008. Здесь Вы можете читать ознакомительный отрывок из книги ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте LibKing.Ru (ЛибКинг) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
М. Дроздова - Неорганическая химия
  • Название:
    Неорганическая химия
  • Автор:
  • Жанр:
  • Издательство:
    Array Литагент «Научная книга»
  • Год:
    2008
  • ISBN:
    978-5-699-26628-9
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Ваша оценка:

М. Дроздова - Неорганическая химия краткое содержание

Неорганическая химия - описание и краткое содержание, автор М. Дроздова, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Информативные ответы на все вопросы курса «Неорганическая химия» в соответствии с Государственным образовательным стандартом.

Неорганическая химия - читать онлайн бесплатно ознакомительный отрывок

Неорганическая химия - читать книгу онлайн бесплатно (ознакомительный отрывок), автор М. Дроздова
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать

Для формулировки второго начала термодинамики необходимо ввести понятия обратимого и необратимого в термодинамическом смысле процессов.

Если система находится в равновесии, это состояние поддерживается как угодно долго при неизменности внешних условий. При изменении внешних условий со–стояние системы может меняться, т. е. в системе может протекать процесс.

Процесс называется термодинамически обрати–мым, если при переходе из начального состояния 1 в ко–нечное состояние 2 все промежуточные состояния ока–зываются равновесными.

Процесс называется термодинамически необрати–мым, если хоть одно из промежуточных состояний не–равновесно.

Обратимый процесс можно осуществить лишь при до–статочно медленном изменении параметров системы – температуры, давления, концентрации веществ и др. Скорость изменения параметров должна быть такой, что–бы возникающие в ходе процесса отклонения от равно–весия были пренебрежимо малы. Следует отметить, что с обратимостью связана важная проблема медицины – консервация тканей при низких температурах.

Обратимые процессы являются предельным случаем реальных процессов, происходящих в природе и осу–ществляемых в промышленности или в лабораториях.

6. Второе начало термодинамики. Энтропия

Максимальная работа W макс, которая может быть по–лучена при данной убыли внутренней энергии ΔЕ в про–цессе перехода из состояния 1 в состояние 2, дости–гается лишь в том случае, если этот процесс обратимый. В соответствии с выражением для первого начала тер–модинамики при этом выделяется минимальная теплота Q мин

Q мин= ΔЕ – W макс.

Максимально достижимый коэффициент полезного действия, характеризующий эффективность затрат внут–ренней энергии системы, соответственно равен

η макс= W макс/ ΔЕ.

При необратимом процессе перехода из состояния 1 в состояние 2 производимая системой работа мень–ше W.

Чтобы рассчитать максимальный коэффициент h макспри известном значении ΔЕ, необходимо знать вели–чину W максили Q мин

W макс= ΔЕ – Q мин, следовательно, η макс= 1 – ΔЕ / Q мин.

Величину Q мин можно рассчитать на основе второго начала термодинамики с помощью термодинамиче–ской функции состояния, называемой энтропией.

Понятие энтропии ввел (1865 г.) немецкий физик Р. Ю. Клаузиус (1822—1888) – один из основателей термодинамики и молекулярно-кинетической теории тепловых процессов. Термодинамическое определе–ние энтропии в соответствии с Клаузиусом: энтропия представляет собой функцию состояния, прира–щение которой ΔS равно теплоте Q минподведен–ной к системе в обратимом изотермическом процессе, деленной на абсолютную температуру Т, при которой осуществляется процесс:

ΔS = Q мин/ Т.

Из формулы следует, что единица измерения эн–тропии Дж/К.

Примером обратимого изотермического процесса мо–жет служить медленное таяние льда в термосе с водой при 273°К. Экспериментально установлено, что для плав–ления 1 моля льда (18 г) необходимо подвести, по край–ней мере, 6000 Дж теплоты. При этом энтропия систе–мы «лед – вода» в термосе возрастает на ΔS = 6000 Дж: 273°К = 22 Дж/К.

При охлаждении термоса с водой при 273°К можно медленно отвести –6000 Дж теплоты, и при кристал–лизации воды образуется 1 моль льда. Для этого про–цесса величина Q минв формуле имеет отрицательное значение. Соответственно, энтропия системы «лед – вода» при образовании 1 моля льда убывает на ΔS =-22 Дж/К.

Аналогичным образом можно рассчитать изменение энтропии при любых изотермических физических и хи–мических процессах, если известна теплота под–водимая к системе или отводимая от нее при этих про–цессах. Как известно из физики, эта теплота может быть определена с помощью калориметрических из–мерений.

Таким образом, изменение энтропии, так же как и двух других функций состояния системы – внутренней энер–гии и энтальпии, представляет собой экспериментально определяемую величину. Физический смысл энтропии, как и внутренней энергии, отчетливо выявляется при рас–смотрении с молекулярно-кинетической точки зрения процессов, протекающих в изолированных системах.

7. Формула Больцмана

Изолированные системы по определению не обме–ниваются с внешней средой ни веществом, ни энер–гией. Конечно, реально таких систем в природе не су–ществует. Однако очень хорошая изоляция может быть осуществлена, если поместить систему в термос, за–крытый пробкой.

Оказывается, что любой самопроизвольный процесс может протекать в изолированной системе лишь в том случае, когда он характеризуется увеличением энтро–пии; в равновесии энтропия системы постоянна:

ΔS ≥ 0.

Это утверждение, основанное на эксперименталь–ных наблюдениях, является одной из возможных фор–мулировок второго начала термодинамики.

Процесс, обратный самопроизвольному, согласно второму началу термодинамики в изолированной систе–ме протекать не может, так как такой процесс характе–ризуется уменьшением энтропии.

Рассмотрение различных изолированных систем по–казывает, что самопроизвольные процессы всегда связаны с ростом числа микросостояний w системы. В этих же процессах происходит возрастание энтропии S системы, т. е. энтропия возрастает с увеличением числа микросостояний. Впервые на существование та–кой зависимости обратил внимание австрийский фи–зик Л. Больцман, который в 1872 г. предложил соотно–шение:

К Б= R / N A= 1,38 – 10 -23Дж/К,

где К Б– постоянная Больцмана, равная отношению газовой постоянной R к постоянной Авогадро N A.

Это соотношение называется формулой Больц-мана.

Формула Больцмана позволяет теоретически рас–считать энтропию системы по числу возможных ее микросостояний. Такие расчеты хорошо согласуются с экспериментально определенными значениями. В частности, известно, что число микросостояний кристаллических веществ при 0°К близко к w 0 « 1. Та–ким образом, могут быть определены абсолютные зна–чения энтропии кристаллизующихся веществ в отличие от внутренней энергии Е и энтальпии Н, для которых можно определить лишь относительные значения.

Увеличение числа микросостояний системы во мно–гих случаях можно связать с ростом неупорядоченно–сти в этой системе, с переходом к более вероятным распределениям энергии системы. Исходя из соотно–шения Больцмана, можно дать молекулярно-кинетиче-ское определение энтропии.

Энтропия есть мера вероятности пребывания системы в данном состоянии или мера неупоря–доченности системы.

Важное значение понятия энтропии связано с тем, что на основе этой величины можно прогнозировать направление самопроизвольного протекания процес–сов. Однако применимость измерения энтропии как критерия направленности процессов ограничивается изолированными системами в соответствии с форму–лировкой второго начала термодинамики.

Читать дальше
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать


М. Дроздова читать все книги автора по порядку

М. Дроздова - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Неорганическая химия отзывы


Отзывы читателей о книге Неорганическая химия, автор: М. Дроздова. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
Большинство книг на сайте опубликовано легально на правах партнёрской программы ЛитРес. Если Ваша книга была опубликована с нарушениями авторских прав, пожалуйста, направьте Вашу жалобу на PGEgaHJlZj0ibWFpbHRvOmFidXNlQGxpYmtpbmcucnUiIHJlbD0ibm9mb2xsb3ciPmFidXNlQGxpYmtpbmcucnU8L2E+ или заполните форму обратной связи.
img img img img img