Коллектив авторов - Хроническая алкогольная интоксикация
- Название:Хроническая алкогольная интоксикация
- Автор:
- Жанр:
- Издательство:Array Литагент «Юридический центр»
- Год:2007
- Город:Санкт-Петербург
- ISBN:978-5-94201-596-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Коллектив авторов - Хроническая алкогольная интоксикация краткое содержание
Авторский коллектив представлен ведущими учеными, разрабатывающими проблему алкогольной интоксикации и непосредственно занимающимися прикладными вопросами судебно-медицинской и судебно-психиатрической экспертизы.
Книга адресована широкому кругу специалистов в области судебной экспертизы (судебным медикам, судебным психиатрам) и юриспруденции (следователям, прокурорам, судьям, адвокатам).
Хроническая алкогольная интоксикация - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
– мембранный,
– лиганд-рецепторный,
– метаболический.
Подобное разделение позволяет раскрыть суть патохимических реакций, которые лежат в основе клинических проявлений хронической интоксикации этиловым алкоголем, а также объяснить новые подходы в их диагностике и лечении.
Взаимодействие с элементами внеклеточного матрикса
Всасываясь и распределяясь в организме человека, этиловый алкоголь изменяет биохимические процессы, протекающие в микроокружении клеток, в частности во внеклеточном матриксе (ВКМ). Компоненты последнего секретируются самими клетками и выполнены коллагенами, гликопротеинами и гелем, образованным водой и гидратированными в ней небольшими по размерам белковыми молекулами. В матриксе присутствуют биологически активные вещества, в том числе цитокины. Скопление биологически активных молекул в микроокружении клеток представляет собой организованную систему, которая играет роль биорегулятора, по крайней мере в пределах одногруппных кластеров клеток, и обеспечивает протекание биохимических реакций в клеточных мембранах и в самих клетках. Более того, передача биохимической информации через ВКМ имеет черты сходства с лиганд-рецепторным взаимодействием, подобным тому, которое происходит в синаптических и гормональных системах, только участники взаимодействия представлены элементами матрикса, плазматической мембраной и цитоскелетом клетки. Таким образом, образуется самостоятельная регуляторная система со своей структурно-функциональной единицей, которая наряду с другими системами организма осуществляет регуляцию его гомеостаза, в частности такие фундаментальные процессы, как деление клеток, их морфогенез, пролиферацию и т. д. (Ямсков И. А., 2001). Эта система является одной из первых мишеней для действия этилового алкоголя.
Подробности взаимодействия этанола с компонентами ВКМ мало изучены. Однако ясно то, что, по крайней мере, этиловый алкоголь может растворяться во внеклеточной воде, нарушать ее коллоидные и проводниковые свойства и приводить к изменению состава водных секторов. Молекулы этанола конкурируют с водой за связывание с различными составляющими ВКМ. В основе этой конкуренции лежит способность этанола и воды к образованию водородных связей, однако этанол является амфифильным соединением и, в отличие от воды, способен одновременно связываться с гидрофильными и гидрофобными центрами матрикса. Это приводит к вытеснению воды из внеклеточного сектора, к изменению конформационного строения молекул ВКМ и к нарушению состава супрамолекулярной организации и функции в целом. Известно также, что алкоголь нарушает активность матричных металлопротеиназ и ослабляет адгезию некоторых специфических субстратов ВКМ (Partridge, 1999).
Приведенные рассуждения имеют отношение к нескольким клиническим проблемам. Назовем две из них: особенности проведения инфузионной терапии при алкогольной патологии, а также получение и применение принципиально новых лекарственных веществ, выделенных из компонентов ВКМ, которые предназначены для лечения алкогольного абстинентного синдрома (ААС) и хронического алкоголизма в целом. Точкой приложения здесь являются гликопротеины ВКМ (например, нейролин, гепалон и др.).
Взаимодействие с липидами плазматических мембран Свободно проникая к самым различным клеткам, этанол оказывает действие на их плазматические мембраны. Он легко внедряется в их липидный бислой, связывается с конгломератами липидов мембран, «разделяет» жирнокислотные цепи фосфолипидов и увеличивает внутримембранные пространства бислоя. Одним из наиболее важных клинических последствий этого процесса является обезвоживание мембраны, которое происходит за счет вытеснения молекул воды (в среднем до двух из двадцати молекул), формирующих нормальную гидратную оболочку каждого из мембранных липидов (Ulrich et al., 1994). Подчеркнем, что в наибольшей степени вытесняются те молекулы воды, которые образуют важные водородные связи с карбоксильными группами соседних липидов и во многом определяют структурные, физико-химические свойства последних и биологических мембран в целом.

Рис. 1. Взаимодействие молекул этанола с фосфатидилхолином (молекулярное моделирование по П. П. Якуцени, 2002)
Условные обозначения: Показано типичное расположение фосфолипида и окружающих его пяти молекул этанола. Молекулы № 1, 2 и 3 образуют водородные связи (светло-серый цвет) с карбоксильными группами жирнокислотных остатков (темно-серый цвет). Отражены три из восьми возможных мест связывания этанола или воды. Молекулы этанола № 4, 5 образуют водородные связи с фосфатной частью полярной головки липидов (темный цвет). Отражены два из более чем десяти возможных мест связывания. Кислород выделен темным оттенком. Вертикальная (алкильная) цепочка липида (атомы водорода этой молекулы не показаны) уходит за нижнюю границу рисунка.
Известно, что мультислои фосфатидилхолина даже при нулевой относительной влажности содержат одну молекулу воды на один липид. При 15 % относительной влажности связываются две молекулы воды с липидом (Ивков В. Г., 1981), из них: 1,2 ± 0,3 молекулы воды взаимодействуют с фосфатной группой липида, а 0,7 ± 0,2 молекулы – с карбоксильными группами его жирнокислотных остатков. Считается, что межмолекулярные водородные связи образуются вторыми из указанных молекул воды. Выступая в роли своеобразных мостиков, они связывают карбоксильные группы соседних липидов.
При помощи молекулярного моделирования, отражающего взаимодействие одиночной молекулы фосфолипида (в данном случае – фосфатидилхолина) с молекулами этанола, П. П. Якуцени (2002) показал, что этанол также способен связываться с фосфатными группами фосфолипидов и карбоксильными группами жирнокислотных цепей (см. рис. 1). Расчеты, выполненные с помощью методов молекулярной фармакологии и квантовой механики, позволили предположить, что молекулы этанола способны вытеснять молекулы «связанной» воды из фосфолипидов биологических мембран и тем самым нарушать естественную структуру. Однако, в отличие от воды, этанол располагает только одной гидроксильной (OH) группой и не способен образовать мостика, связывающего молекулы соседних липидов друг с другом. Рабочая гипотеза П. П. Якуцени (2002) о механизме дегидратирующего действия этилового алкоголя, первично связанного со структурами липидного бислоя, подтверждена более поздними углубленными расчетами (см. рис. 2).

Рис. 2. Характерное распределение этанола в липидной мембране при концентрации алкоголя в плазме крови на уровне 1‰ (результат молекулярного моделирования П. П. Якуцени, 2002)
Читать дальшеИнтервал:
Закладка: