Нил Стивенсон - Криптономикон [litres]

Тут можно читать онлайн Нил Стивенсон - Криптономикон [litres] - бесплатно ознакомительный отрывок. Жанр: Киберпанк, издательство АСТ, год 2014. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Криптономикон [litres]
  • Автор:
  • Жанр:
  • Издательство:
    АСТ
  • Год:
    2014
  • Город:
    Москва
  • ISBN:
    978-5-17-068863-0
  • Рейтинг:
    5/5. Голосов: 31
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Нил Стивенсон - Криптономикон [litres] краткое содержание

Криптономикон [litres] - описание и краткое содержание, автор Нил Стивенсон, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Выдающийся, значительный роман.
Роман, который можно читать и как отдельное произведение, и как своеобразный приквел к opus magnum автора — «Барочному циклу».
Роман, обозначивший новый этап в творчестве Нила Стивенсона.
Роман-мозаика, в котором переплетены линия детективная и историко-приключенческая, фантастическая, реалистическая — и откровенно сатирическая.
В «Криптономиконе» Нил Стивенсон соединяет несколько уровней повествования в единый гипертекст — и создает поразительно удачное и единое целое, которое не оставит равнодушным ни ценителя элитарной современной прозы, ни поклонника просто отличной жанровой литературы.

Криптономикон [litres] - читать онлайн бесплатно ознакомительный отрывок

Криптономикон [litres] - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Нил Стивенсон
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

— Различие между физикой и математикой было нечетким во времена Ньютона…

— А может быть, и в наше фремя, — сказал Руди.

— …и это прямо относится к тому, о чем я собираюсь говорить, — продолжал Алан. — Я про расселовские «Основания математики», в которых они с Уайтхедом начали абсолютно с пустого места и выстроили все — всю математику — на небольшом числе основных принципов. И вот почему я тебе это говорю, Лоуренс… Эй, Лоуренс! Проснись!

— М-м-м?

— Руди, возьми палку — да, эту — и следи за Лоуренсом. Когда глаза у него начнут вот так стекленеть, тыкай его в бок.

— Мы не в английской школе, тут так нельзя.

— Я слушаю, — сказал Лоуренс.

— Из «ОМ» следует абсолютно радикальная вещь — все в математике можно выразить определенной последовательностью символов.

— Лейбниц сказал это много раньше! — возмутился Руди.

— Ну, Лейбниц предложил символы, которые мы используем в дифференциальном исчислении, но…

— Я не про это!

— И он изобрел матрицы, но…

— И не про это тоже!

— И он немного занимался двоичной системой, но…

— Это софсем другое!

— Ладно, Руди, говори, о чем ты.

— Лейбниц изобрел базовый алфавит — записал набор символов для логических выражений.

— Ну, я не знал, что в сферу интересов герра Лейбница входила формальная логика, но…

— А как же! Он хотел сделать то же, что Рассел и Уайтхед, только не для одной математики, а для всего на сфете!

— Поскольку ты, Руди, похоже, единственный на планете знаешь об этом начинании Лейбница, можем ли мы допустить, что его затея не увенчалась успехом?

— Ты можешь допускать все, что тебе угодно, Алан, — ответил Руди, — но я — математик и ничего не допускаю.

Алан оскорбленно вздохнул и наградил Руди многозначительным взглядом, который, как догадывался Уотерхауз, означал «я тебе это припомню».

— Если мне позволят продолжить, — сказал он, — я вообще-то хотел, чтобы вы согласились вот с чем: все в математике можно выразить последовательностью символов, — он взял палку, которой надо было тыкать Лоуренса, и начал писать на земле что-то вроде + = 3) √(-1) π, — и мне глубоко безразлично, будут это символы Рассела, или Лейбница, или гексаграммы И-Цзина.

— Лейбниц восхищался И-Цзином! — страстно воскликнул Руди.

— Помолчи пока про Лейбница, Руди. Мы с тобой едем в поезде, сидим в вагоне-ресторане, мило болтаем, а этот поезд со страшной силой тянут локомотивы «Бертран Рассел», «Риман», «Эйлер» и другие. А наш друг Лоуренс бежит рядом с поездом, пытаясь от нас не отстать — не обязательно потому, что мы умнее, просто он — деревенский , и у него нет билета. И я, Руди, просто высовываюсь в окошко и пытаюсь втащить его в гребаный поезд, чтобы мы втроем могли мило болтать о математике, не слушая все время, как он пыхтит и отдувается.

— Ладно, Алан.

— Если ты не будешь перебивать, я скоро закончу.

— Но есть еще локомотив по имени Лейбниц.

— Ты считаешь, что я не отдаю должного немцам? Внимание, сейчас я упомяну человека с немецкой фамилией.

— Кто же это? Фон Тьюринг? — съязвил Руди.

— Фон Тьюринг будет потом. Вообще-то я имел в виду Гёделя.

— Какой он немец! Он австрияк!

— Боюсь, это теперь одно и то же.

— Не я придумал аншлюс, и нечего на меня так смотреть. Я ненавижу Гитлера.

— Про Гёделя я слышал, — вставил Уотерхауз, чтобы охладить спор. — Но можно немножко назад?

— Конечно, Лоуренс.

— Зачем это надо? Ну то, что сделал Рассел? Что не так в математике? Я хочу сказать, два плюс два — четыре, верно?

Алан взял две бутылочные пробки и положил на землю.

— Два. Раз-два. Плюс… — Он положил рядом еще две. — Еще два. Раз-два. Равняется четырем. Раз-два-три-четыре.

— Что в этом плохого? — спросил Лоуренс.

— Однако, Лоуренс, когда ты на самом деле занимаешься математикой , абстрактно, ты ведь не считаешь пробки?

— Я вообще ничего не считаю.

Руди объявил:

— Очень современный взгляд.

— В смысле?

— Долгое время подразумевалось, — сказал Алан, — что математика — своего рода физика пробок. Что любую математическую операцию, которую ты выполняешь на бумаге, как бы ни была она сложна, можно свести — по крайней мере в теории — к перекладыванию реального счетного материала вроде пробок в реальном мире.

— Нельзя же взять две целые одну десятую пробки.

— Ладно, ладно, пусть будут пробки для целых чисел, и для таких, как две целые одна десятая — физические меры, например длина этой палки. — Алан положил палку рядом с пробками.

— Как насчет «p»? Нельзя отпилить палку длиной ровно «p» дюймов.

— «p» — из геометрии. Та же история, — вставил Руди.

— Да, считалось, что Евклидова геометрия на самом деле своего рода физика, что его прямые и все такое описывают свойства физического мира. Но… знаешь Эйнштейна?

— Я не очень запоминаю фамилии.

— Седой, с большими усами.

— А, да, — мрачно ответил Лоуренс. — Я подходил к нему с вопросом про шестеренки. Он сказал, что опаздывает на встречу.

— Он придумал общую теорию относительности — своего рода практическое приложение, но не Евклидовой, а Римановой геометрии…

— Тот же Риман, что твоя дзета-функция?

— Тот же Риман, другое направление. Не уводи нас в сторону, Лоуренс…

— Риман показал, что существует много-много геометрий, которые, не являясь Евклидовыми, в то же время внутренне непротиворечивы, — объяснил Руди.

— Ладно, давайте снова к «ОМ», — сказал Лоуренс.

— Да! Рассел и Уайтхед. Итак, когда математики начали играть со всякими корнями из минус единицы и кватернионами, это было уже не то, что можно перевести в палки и пробки. И все же они по-прежнему получали верные результаты.

— По крайней мере внутренне непротиворечивые, — уточнил Руди.

— О’кей. Значит, математика — больше, чем физика пробок.

— Так нам представляется, Лоуренс, но возникает вопрос: математика по правде или это только игра в символы? Другими словами: мы открываем Истину или просто балуемся?

— Она должна быть по правде, потому что, когда прикладываешь ее к физике, она работает! Я слышал про общую теорию относительности и знаю, что она подтверждена экспериментами.

— Большая часть математики не поддается экспериментальной проверке, — сказал Руди.

— Вся идея в том, чтобы укрепить связь с физикой, — произнес Алан.

— И при этом не баловаться.

— И для этого написаны «ОМ»?

— Рассел и Уайтхед свели все математические понятия к таким жутко простым вещам, как множества. Отсюда они перешли к целым числам и так далее.

— Но как можно свести к множествам, например, число «p»?

— Нельзя, — сказал Алан, — зато его можно выразить цепочкой цифр: три запятая один четыре один пять девять и так далее.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Нил Стивенсон читать все книги автора по порядку

Нил Стивенсон - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Криптономикон [litres] отзывы


Отзывы читателей о книге Криптономикон [litres], автор: Нил Стивенсон. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x