Терри Пратчетт - Наука Плоского мира. Книга 4. День Страшного Суда

Тут можно читать онлайн Терри Пратчетт - Наука Плоского мира. Книга 4. День Страшного Суда - бесплатно полную версию книги (целиком) без сокращений. Жанр: Фэнтези, издательство Литагент 1 редакция, год 2016. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Наука Плоского мира. Книга 4. День Страшного Суда
  • Автор:
  • Жанр:
  • Издательство:
    Литагент 1 редакция
  • Год:
    2016
  • Город:
    Москва
  • ISBN:
    978-5-699-90878-3
  • Рейтинг:
    2/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 40
    • 1
    • 2
    • 3
    • 4
    • 5

Терри Пратчетт - Наука Плоского мира. Книга 4. День Страшного Суда краткое содержание

Наука Плоского мира. Книга 4. День Страшного Суда - описание и краткое содержание, автор Терри Пратчетт, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В двух мирах – Плоском и Круглом – вновь переполох! Омниане узнали о Круглом мире и хотят его контролировать. Само его существование – это издевательство над их религией. Однако волшебники Незримого университета придерживаются совсем другой точки зрения. В конце концов, они создали этот мир!
В четвертой книге цикла «Наука Плоского мира» Терри Пратчетт, профессор Йен Стюарт и доктор Джек Коэн создают мозгодробительную смесь литературы, ультрасовременной науки и философии в попытке ответить на ДЕЙСТВИТЕЛЬНО большие вопросы – на этот раз о Боге, Вселенной и, честно говоря, Обо Всем.
Впервые на русском языке!

Наука Плоского мира. Книга 4. День Страшного Суда - читать онлайн бесплатно полную версию (весь текст целиком)

Наука Плоского мира. Книга 4. День Страшного Суда - читать книгу онлайн бесплатно, автор Терри Пратчетт
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Мы заговорили о цилиндре не только потому, что он всем знаком, но и потому, что у него имеется интересный двоюродный братец – плоский тор . На первый взгляд может показаться, что это какой-то оксюморон, ведь тор выглядит как замечательно пухлый бублик. И всё же название не так уж бессмысленно, если метрически рассматриваемое пространство является плоскостью, а топологически – тором. Чтобы сделать плоский тор, надо склеить противоположные стороны квадрата, а ведь квадраты – это плоскости. Аналог такой конструкции применяется в компьютерных играх: противоположные края экрана соединены так, что, когда монстр или инопланетный корабль пропадает с одной стороны, он тут же появляется в соответствующей точке на противоположной. Программисты называют подобный приём «заворачиванием», что довольно точно отражает его сущность, хотя мы надеемся, вы не станете проверять это на практике, по крайней мере, если не хотите основать кладбище разбитых мониторов. Топологически сворачивание вертикальных сторон превращает плоский экран в цилиндр. Последующее сворачивание горизонтальных – соединяет края такого цилиндра, и у нас получается тор. Обратите внимание, края при этом вообще исчезают, и ни один инопланетянин от вас теперь не удерёт.

Плоский тор – это простейший пример общего метода, которым пользуются топологи для создания сложных пространств из простых. Возьмите одно или несколько простых пространств и склейте их, соблюдая определённые правила. Вспомните плоскую коробку с мебелью из «Икеи»: в ней куча досок и инструкции вида «Вставьте полку А в паз Б». С точки зрения математики, отдельные детали и инструкции – это всё, что вам требуется в жизни, если, конечно, вам не нужно собирать мебель на практике. Достаточно представить, как это было бы в реальности.

До изобретения космических путешествий в вопросе о форме Земли человечество сидело в одной лодке с муравьём. В отношении формы Вселенной у нас до сих пор ничего не изменилось . Тем не менее, чтобы сделать кое-какие выводы о её форме, мы, подобно муравью, можем воспользоваться соответствующими наблюдениями. Только наблюдений самих по себе недостаточно – нам потребуется ещё истолковать их в контексте неких логических концепций о природе мира. Если муравей вообще не знает, что находится на поверхности, формула Гаусса ему мало чем поможет.

В настоящей момент такой логической концепцией принято считать общую теорию относительности, рассматривающую гравитацию как искривление пространства-времени. В плоском пространстве-времени частицы движутся по прямым, точно так же, как они это делают в ньютоновской физике, если на них не действуют какие-либо внешние силы. Если же пространство-время деформировано, они движутся по криволинейным траекториям, что в ньютоновской физике соответствует воздействию силы, в частности гравитации. Эйнштейн выбросил силы, сохранив искривление. В общей теории относительности массивные тела, такие как звёзды и планеты, искривляют пространство-время; частицы начинают отклоняться от прямых траекторий из-за этого искривления, а вовсе не под действием каких-либо сил. Эйнштейн говорил, что для понимания гравитации необходимо понять геометрию Вселенной.

Ещё в самом начале существования теории относительности космологи открыли подходящую для Вселенной форму, согласующуюся с эйнштейновской теорией: гиперсферу. Топологически это самая обыкновенная сфера, под которой понимается исключительно поверхность. Сфера двухмерна: для локализации любой точки на ней достаточно двух координат. Например, широты и долготы. Гиперсфера же трёхмерна. Математики определяют её, также используя геометрию координат. К сожалению, в естественном пространстве такой фигуры не существует, поэтому мы не можем соорудить модель или нарисовать картинку.

Это не просто плотный шар, состоящий из сферической поверхности и заполнящего материала. У сферы, как и у гиперсферы, нет границ. Вот Плоский мир, он имеет границы, показывающие, где кончается, собственно, мир, а океан низвергается с Краепада. С нашим сферическим миром всё не так просто: у него границы отсутствуют. Где бы вы ни находились, оглянитесь вокруг и увидите сушу или океан. Сколько бы муравей ни бродил по такому миру, он не найдёт места, где тот заканчивается и начинается Вселенная. То же самое справедливо и для гиперсферы. Однако плотный шар всё же имеет границу – это его поверхность. Если представить, что муравей способен углубляться внутрь сферы, подобно тому, как мы перемещаемся в пространстве, то, достигнув поверхности с внутренней стороны, он должен обнаружить конец Вселенной.

Для наших целей достаточно знать, что гиперсфера – естественный аналог обычной сферы, но с одним дополнительным измерением. Для большей ясности вообразите, как может представить себе сферу муравей, а затем возьмите и добавьте одно измерение. Такой же фокус проделал А. Квадрат из Флатландии. Сфера, как известно, состоит из двух полусфер, склеенных в районе экватора. Каждую полусферу можно сплющить в плоский диск в процессе непрерывной деформации. Следовательно, для топологов сфера ничем не отличается от летающей тарелки: двух дисков, соединённых по краям. Итак, трёхмерный аналог диска – плотный шар. Отсюда следует: гиперсфера – это склеенные плотные шары. В реальном пространстве с круглыми шарами такое проделать невозможно, но математически мы можем легко вывести правило, согласно которому каждой точке на поверхности одного шара будет соответствовать точка на поверхности другого. После чего достаточно представить, что соответствующие точки совпадают, подобно тому, как совпали стороны квадрата при изготовлении плоского тора.

Гиперсфера играла значительную роль в ранних работах одного из создателей современной топологии – Анри Пуанкаре. Он работал на рубеже XIX-XX веков и, являясь одним из ведущих математиков того времени, чуть было не опередил Эйнштейна с созданием специальной теории относительности [58] Он разработал математические основы СТО, однако физики этого не заметили, ведь Пуанкаре не был физиком. . В начале XX века Пуанкаре разработал множество базовых инструментов топологии. Он знал, что гиперсфера является фундаментом трёхмерной топологии, точно так же как сфера – двухмерной. В частности, гиперсфера не имеет «дыр», как в бублике-торе, а следовательно, в определённом смысле она является простейшим трёхмерным топологическим пространством. Пуанкаре априори предположил, что верно и обратное: любое трехмерное топологическое пространство без дыр будет гиперсферой.

Однако в 1904 году он изобрёл более сложное додекаэдрическое пространство, не имеющее дыр, но не являющееся гиперсферой. Существование подобного частного случая формы доказало, что его изначальное предположение было ошибочно. Эта неожиданная проблема заставила его добавить ещё одно условие, которое, как он надеялся, будет более полно характеризовать гиперсферу. Как известно, двухмерная поверхность является сферой тогда и только тогда, когда любая замкнутая петля на ней может быть стянута в одну точку. Пуанкаре предположил, что тем же свойством должно обладать и трёхмерное пространство гиперсферы. Он был прав, но математикам потребовалось почти сто лет для доказательства его гипотезы. В 2003 году молодой русский математик Григорий Перельман успешно доказал идею Пуанкаре. За это ему полагался миллион долларов, но, как все прекрасно помнят, от денег он отказался.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Терри Пратчетт читать все книги автора по порядку

Терри Пратчетт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Наука Плоского мира. Книга 4. День Страшного Суда отзывы


Отзывы читателей о книге Наука Плоского мира. Книга 4. День Страшного Суда, автор: Терри Пратчетт. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x