Кэти О'Нил - Убийственные большие данные. Как математика превратилась в оружие массового поражения

Тут можно читать онлайн Кэти О'Нил - Убийственные большие данные. Как математика превратилась в оружие массового поражения - бесплатно ознакомительный отрывок. Жанр: sociology-book, издательство Литагент АСТ, год 2018. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Убийственные большие данные. Как математика превратилась в оружие массового поражения
  • Автор:
  • Жанр:
  • Издательство:
    Литагент АСТ
  • Год:
    2018
  • Город:
    Москва
  • ISBN:
    978-5-17-982583-8
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Кэти О'Нил - Убийственные большие данные. Как математика превратилась в оружие массового поражения краткое содержание

Убийственные большие данные. Как математика превратилась в оружие массового поражения - описание и краткое содержание, автор Кэти О'Нил, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Математические алгоритмы с каждым днем все сильнее подчиняют себе нашу жизнь. Более того: по мнению автора книги, профессора математики и финансового аналитика, эти алгоритмы уже превратились в опасное оружие в руках государства и корпораций – и это оружие нацелено в первую очередь на самые бедные и незащищенные слои населения. Новейшие математические приложения, с помощью которых банки и страховые компании отслеживают каждый наш шаг, претендуют на полную объективность, однако на самом деле в них заложены те же предрассудки и предубеждения, что свойственны их создателям – далеким от совершенства человеческим существам. При этом скрытые принципы работы математических моделей и их тайные критерии охраняются как величайшая коммерческая тайна, а их вердикты, подчас очевидно ошибочные и явно вредные, считаются окончательными и обжалованию не подлежат. Добро пожаловать в прекрасный новый мир – мир убийственных Больших данных!

Убийственные большие данные. Как математика превратилась в оружие массового поражения - читать онлайн бесплатно ознакомительный отрывок

Убийственные большие данные. Как математика превратилась в оружие массового поражения - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Кэти О'Нил
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Отказ признавать наличие риска – давняя традиция в мире финансов. Культуру Уолл-стрит определяют ее трейдеры, а риски – это то, что они постоянно недооценивают. Это результат того, что мы оцениваем профессионализм трейдера по его «коэффициенту Шарпа»: он рассчитывается как отношение прибыли, которую приносит трейдер, к стандартному (среднеквадратичному) отклонению для его портфеля [4] Коэффициент Шарпа показывает, насколько хорошо риск компенсируется доходностью актива. При одинаковом ожидаемом доходе актив с более высоким коэффициентом Шарпа считается менее рискованным. . Этот коэффициент критически важен для карьеры трейдера, его ежегодного бонуса, его самооценки. Если мы лишим этих трейдеров их физических тел и начнем воспринимать их исключительно как набор алгоритмов, эти алгоритмы будут постоянно сосредоточены на оптимизации коэффициента Шарпа. В идеале он будет расти – или, по крайней мере, не падать слишком низко. Поэтому, если один из отчетов по рискованности свопов кредитного дефолта поднимет степень риска одного из ключевых вкладов трейдера, его коэффициент Шарпа упадет. Это может стоить ему сотен тысяч долларов, когда дело дойдет до расчета его ежегодного бонуса.

Очень быстро я осознала, что занимаюсь просто штамповкой привычных решений. В 2011 году настало время снова сменить работу – и я увидела, что рынок для математиков вроде меня стремительно расширяется. В то время мне было достаточно напечатать два слова в моем резюме – и я уже была провозглашена новым специалистом по обработке информации, готовым погрузиться в мир онлайн-экономики. В результате я оказалась в нью-йоркском стартапе под названием Intent Media .

Начала я с разработки моделей, которые предсказывали поведение посетителей сайтов, посвященных путешествиям. Ключевой вопрос заключался в том, с какой целью кто-то заходит на сайт Expedia : просто посмотреть на картинки или собирается в самом деле потратить деньги? Те, кто не собирался ничего покупать, мало что значили в качестве потенциального источника дохода. Поэтому таким пользователям мы показывали рекламу фирм-конкурентов – Travelocity или Orbitz . Если посетитель кликал по рекламе, это приносило нам несколько центов – лучше, чем ничего. Однако мы не собирались показывать эти объявления серьезным покупателям. В худшем случае мы получали десяток центов дохода за размещение рекламы – и посылали при этом потенциальных клиентов к конкурентам, где они могли оставить тысячи долларов за гостиничные номера в Лондоне и Токио. Понадобились бы тысячи просмотров рекламных объявлений, чтобы возместить хотя бы несколько сотен долларов из упущенной прибыли от этих клиентов. Поэтому было крайне важно удержать их на нашем сайте.

Моей задачей была разработка алгоритма, который мог бы отличить созерцателя витрин от покупателя. Ориентироваться при этом можно было на несколько очевидных сигналов. Зарегистрировался ли человек на сайте? Совершал ли он уже покупки? Я также обращала внимание и на другие факторы, например на время дня и дату. Определенные недели были особенно урожайными. Например, один из пиков приходился на День поминовения в середине весны, когда огромное количество людей практически одновременно определялись со своими планами на лето. Мой алгоритм придавал больше ценности покупателям в течение подобных периодов: в это время повышалась вероятность, что они действительно что-то купят.

Принципы работы статистики, как выяснилось, было очень легко перенести из хедж-фондов в онлайн-коммерцию: самой большой разницей было то, что вместо движений в рынке я теперь предсказывала клики конкретных людей.

На самом деле я увидела огромное количество параллелей между финансами и Большими данными. Обе индустрии черпают работников из одного и того же кадрового резерва: в основном из элитных университетов, таких как Массачусетский технологический институт (MIT), Принстон или Стэнфорд. Эти новые работники отчаянно стремятся к успеху и всю жизнь сосредоточены на внешних количественных показателях, таких как результаты SAT [5] Scholastic Assessment Test – стандартизованный тест для приема в американские вузы. По мнению образовательной организации College Board , хорошие результаты SAT вкупе с высоким средним баллом за освоение школьной программы лучше отражают готовность к обучению в вузе, чем просто средний балл. (академических оценочных тестов) и поступление в колледжи. В области как финансов, так и технологий они получают один и тот же месседж: они разбогатеют и будут править миром. Их продуктивность демонстрирует, что они на правильном пути, и это конвертируется в долларовый эквивалент. Успех приводит к ложному выводу: все, что они делают, чтобы заработать больше денег, – это хорошо. Они таким образом «создают добавленную ценность». Иначе за что бы их вознаграждал рынок?

В обеих культурах богатство больше не представляет собой средство выживания. Оно напрямую привязывается к ценности отдельно взятой личности. Молодой обитатель пригорода, обладающий массой преимуществ (образование в частной школе, усиленная подготовка к вступительным экзаменам в колледж, семестр за границей – в Париже или Шанхае), все равно тешит себя иллюзией, что в мир привилегий он попал благодаря собственным талантам, усиленной работе и выдающимся способностям в области решения проблем. Деньги уничтожают любые сомнения. А другие члены его круга подыгрывают ему, создавая сообщество взаимного восхищения. Они с радостью доказывают нам, что представляют собой продукты работы дарвиновского естественного отбора, тогда как со стороны это выглядит как комбинация слепой удачи и выигрыша у системы.

В обеих индустриях реальный мир со всеми его проблемами воспринимается с большой дистанции. Работающие в них люди стремятся подменить людей наборами данных, превратить их в более эффективных покупателей, избирателей или работников, чтобы оптимизировать какую-нибудь цель. Это совсем легко сделать и оправдать, когда успех приходит в виде безличного результата и когда задействованные люди остаются такими же абстракциями, как цифры на экране.

Параллельно с работой в области обработки данных я уже вела свой блог – и все больше была вовлечена в движение «Захвати Уолл-стрит». Все больше и больше меня беспокоило отчуждение технических моделей от реальных людей – и моральные последствия этого отчуждения. На самом деле я видела появление того же механизма, который я наблюдала в мире финансов: ложное чувство безопасности, которое вело к распространению далеких от совершенства моделей, определения успеха, которые служили оправданиями самим себе, и растущие петли обратной связи. Людей, которые пытались противодействовать этим процессам, обзывали ностальгирующими луддитами.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Кэти О'Нил читать все книги автора по порядку

Кэти О'Нил - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Убийственные большие данные. Как математика превратилась в оружие массового поражения отзывы


Отзывы читателей о книге Убийственные большие данные. Как математика превратилась в оружие массового поражения, автор: Кэти О'Нил. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x